我正在学习如何在Python上使用Imputer。
这是我的代码:
df=pd.DataFrame([["XXL", 8, "black", "class 1", 22],
["L", np.nan, "gray", "class 2", 20],
["XL", 10, "blue", "class 2", 19],
["M", np.nan, "orange", "class 1", 17],
["M", 11, "green", "class 3", np.nan],
["M", 7, "red", "class 1", 22]])
df.columns=["size", "price", "color", "class", "boh"]
from sklearn.preprocessing import Imputer
imp=Imputer(missing_values="NaN", strategy="mean" )
imp.fit(df["price"])
df["price"]=imp.transform(df["price"])
然而,这会引发以下错误: ValueError:值的长度与索引的长度
不匹配我的代码有什么问题???
感谢您的帮助
答案 0 :(得分:13)
这是因为Imputer
通常用于DataFrames而不是Series。可能的解决方案是:
imp=Imputer(missing_values="NaN", strategy="mean" )
imp.fit(df[["price"]])
df["price"]=imp.transform(df[["price"]]).ravel()
# Or even
imp=Imputer(missing_values="NaN", strategy="mean" )
df["price"]=imp.fit_transform(df[["price"]]).ravel()
答案 1 :(得分:2)
我认为您要为imputer指定轴,然后转置它返回的数组:
import pandas as pd
import numpy as np
df=pd.DataFrame([["XXL", 8, "black", "class 1", 22],
["L", np.nan, "gray", "class 2", 20],
["XL", 10, "blue", "class 2", 19],
["M", np.nan, "orange", "class 1", 17],
["M", 11, "green", "class 3", np.nan],
["M", 7, "red", "class 1", 22]])
df.columns=["size", "price", "color", "class", "boh"]
from sklearn.preprocessing import Imputer
imp=Imputer(missing_values="NaN", strategy="mean",axis=1 ) #specify axis
q = imp.fit_transform(df["price"]).T #perform a transpose operation
df["price"]=q
print df
答案 2 :(得分:1)
简单的解决方案是提供2D阵列
balloon 65536
这是您的DataFrame
答案 3 :(得分:0)
这里是 Simple Imputer 的文档。对于fit方法,它采用类似数组或稀疏的metrix作为输入参数。 您可以尝试:
imp.fit(df.iloc[:,1:2])
df['price']=imp.transform(df.iloc[:,1:2])
提供索引位置以适合方法,然后应用转换。
>>> df
size price color class boh
0 XXL 8.0 black class 1 22.0
1 L 9.0 gray class 2 20.0
2 XL 10.0 blue class 2 19.0
3 M 9.0 orange class 1 17.0
4 M 11.0 green class 3 NaN
5 M 7.0 red class 1 22.0
您可以为boh
imp.fit(df.iloc[:,4:5])
df['price']=imp.transform(df.iloc[:,4:5])
>>> df
size price color class boh
0 XXL 8.0 black class 1 22.0
1 L 9.0 gray class 2 20.0
2 XL 10.0 blue class 2 19.0
3 M 9.0 orange class 1 17.0
4 M 11.0 green class 3 20.0
5 M 7.0 red class 1 22.0
如果我错了,请纠正我。建议将不胜感激。