我想在我的应用程序中绘制学习曲线。
示例曲线图像如下所示。
学习曲线是以下方差之间的曲线,
它有助于观察我们的模型是否具有高偏差或高偏差问题。
R中是否有任何包可以帮助获得这个情节?
答案 0 :(得分:2)
你可以使用优秀的Caret包制作这样的情节。 Customizing the tuning process部分将非常有用。
此外,您可以查看Joseph Rickert撰写的关于R-Bloggers的精彩博客文章。它们的标题为"Why Big Data? Learning Curves"和"Learning from Learning Curves"。
<强>更新强>
我刚刚在这个问题Plot learning curves with caret package and R上发了一篇文章。我想我的回答对你更有用。为了方便起见,我在这里用R绘制学习曲线重现了相同的答案。但是,我使用了流行的caret
包来训练我的模型并获得训练和测试集的RMSE错误。
# set seed for reproducibility
set.seed(7)
# randomize mtcars
mtcars <- mtcars[sample(nrow(mtcars)),]
# split iris data into training and test sets
mtcarsIndex <- createDataPartition(mtcars$mpg, p = .625, list = F)
mtcarsTrain <- mtcars[mtcarsIndex,]
mtcarsTest <- mtcars[-mtcarsIndex,]
# create empty data frame
learnCurve <- data.frame(m = integer(21),
trainRMSE = integer(21),
cvRMSE = integer(21))
# test data response feature
testY <- mtcarsTest$mpg
# Run algorithms using 10-fold cross validation with 3 repeats
trainControl <- trainControl(method="repeatedcv", number=10, repeats=3)
metric <- "RMSE"
# loop over training examples
for (i in 3:21) {
learnCurve$m[i] <- i
# train learning algorithm with size i
fit.lm <- train(mpg~., data=mtcarsTrain[1:i,], method="lm", metric=metric,
preProc=c("center", "scale"), trControl=trainControl)
learnCurve$trainRMSE[i] <- fit.lm$results$RMSE
# use trained parameters to predict on test data
prediction <- predict(fit.lm, newdata = mtcarsTest[,-1])
rmse <- postResample(prediction, testY)
learnCurve$cvRMSE[i] <- rmse[1]
}
pdf("LinearRegressionLearningCurve.pdf", width = 7, height = 7, pointsize=12)
# plot learning curves of training set size vs. error measure
# for training set and test set
plot(log(learnCurve$trainRMSE),type = "o",col = "red", xlab = "Training set size",
ylab = "Error (RMSE)", main = "Linear Model Learning Curve")
lines(log(learnCurve$cvRMSE), type = "o", col = "blue")
legend('topright', c("Train error", "Test error"), lty = c(1,1), lwd = c(2.5, 2.5),
col = c("red", "blue"))
dev.off()