我在RaspberryPi中使用opencv 3.1 3.我试图运行以下Hough Circle检测算法
#! /usr/bin/python
import numpy as np
import cv2
from cv2 import cv
VInstance = cv2.VideoCapture(0)
key = True
"""
params = dict(dp,
minDist,
circles,
param1,
param2,
minRadius,
maxRadius)
"""
def draw_circles(circles, output):
if circles is not None:
for i in circles[0,:]:
#draw the outer circle
cv2.circle(output,(i[0],i[1]),i[2],(0,255,0),2)
#draw the centre of the circle
cv2.circle(output,(i[0],i[1]),2,(0,0,255),3)
print("The number of circles if %d" %(circles[0].shape[0]))
elif circles is None:
print ("The number of circles is 0")
if __name__ == '__main__':
while key:
ret,img = VInstance.read()
## Smooth image to reduce the input noise
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgSmooth = cv2.GaussianBlur(imgGray,(5,5),3)
## Compute Hough Circles
circles = cv2.HoughCircles(imgSmooth,cv2.cv.CV_HOUGH_GRADIENT,1,100,
param1=80,
param2=50,
minRadius=50,
maxRadius=100)
draw_circles(circles,img)
## Display the circles
cv2.imshow('detected circles',imgGray)
cv2.imshow("result",img)
k = cv2.waitKey(1)
if k == 27:
cv2.destroyAllWindows()
break
但我收到Assertion Failed错误,详情如下。
OpenCV错误:cvtColor中的断言失败(scn == 3 || scn == 4), 文件/home/pi/opencv-3.1.0/modules/imgproc/src/color.cpp,第8000行 回溯(最近一次调用最后一次):文件" HoughCircles.py",第70行, 在 imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)cv2.error:/home/pi/opencv-3.1.0/modules/imgproc/src/color.cpp:8000:错误: (-215)scn == 3 || scn == 4 in function cvtColor
任何人都可以查看并提供帮助!
答案 0 :(得分:1)
错误代码"断言失败(scn == 3 || scn == 4)在cvtColor"表示public class CompositeProduct` extends Product {
private List<Product> products;
public CompositeProduct(List<Product> products) { this.products = products }
public String preview() {
String previewText = "";
for(Product product : products) { previewText+=product.preview(); }
return preview;
}
}
方法中的输入(源)图像没有3或4个通道,这是此类转换所必需的。可能您的输入图像已经是灰度格式。尽量不要使用该方法,您的问题应该得到解决。如果它确实抛出其他无法解决的错误或无法解决问题,请在评论中发布您的问题。
答案 1 :(得分:1)
这意味着输入图像无效,这就是您需要检查循环中ret
值的原因!
错误和问题标题与你的Hough圈没有任何关系,所以我会压缩我的答案以解决断言失败(稍后再加入你的东西!):
#!/usr/bin/python
import numpy as np
import cv2
VInstance = cv2.VideoCapture(0)
if __name__ == '__main__':
while True:
ret,img = VInstance.read()
# Confirm we have a valid image returned
if not ret:
break
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("result",img)
k = cv2.waitKey(1)
if k == 27:
break
cv2.destroyAllWindows()