我想重载运算符<和>允许在BST内搜索int值(不是为了存储整数而是用于存储单词)。
对于那些想知道为什么首先要进行超载的人,请查看C++ I'm stuck filling this BST with its proper values
我需要两个搜索功能才能正确填写字典中的单词,然后定义其同义词/反义词。
这是搜索功能:
//--- Definition of findId()
template <typename DataType>
DataType& BST<DataType>::findId(const int id ) const
{
typename BST<DataType>::BinNodePointer locptr = myRoot;
typename BST<DataType>::BinNodePointer parent =0;
bool found = false;
while (!found && locptr != 0)
{
if (locptr->data > id) // descend left
locptr = locptr->left;
else if (locptr->data < id) // descend right
locptr = locptr->right;
else // item found
found = true;
}
return found ? locptr->data : NULL;
}
到目前为止我的尝试......
template <typename DataType>
bool BST<DataType>::operator >(const int anotherId)const
{
typename BST<DataType>::BinNodePointer locptr;
//undefined pointer, what should I make it point at?
return (locptr->data > anotherId);
}
整个模板:
#include <iostream>
#include <iomanip>
#include <stdlib.h>
#ifndef BINARY_SEARCH_TREE
#define BINARY_SEARCH_TREE
template <typename DataType>
class BST
{
public:
/***** Function Members *****/
BST();
bool empty() const;
DataType& findId (const int id)const;
bool operator >(const int anotherId)const;
bool operator < (const int anotherId)const;
bool search(const DataType & item) const;
void insert(const DataType & item);
void remove(const DataType & item);
void inorder(std::ostream & out) const;
void graph(std::ostream & out) const;
private:
/***** Node class *****/
class BinNode
{
public:
DataType data;
BinNode * left;
BinNode * right;
// BinNode constructors
// Default -- data part is default DataType value; both links are null.
BinNode()
: left(0), right(0)
{}
// Explicit Value -- data part contains item; both links are null.
BinNode(DataType item)
: data(item), left(0), right(0)
{}
}; //end inner class
typedef BinNode * BinNodePointer;
/***** Private Function Members *****/
void search2(const DataType & item, bool & found,
BinNodePointer & locptr, BinNodePointer & parent) const;
/*------------------------------------------------------------------------
Locate a node containing item and its parent.
Precondition: None.
Postcondition: locptr points to node containing item or is null if
not found, and parent points to its parent.#include <iostream>
------------------------------------------------------------------------*/
void inorderAux(std::ostream & out,
BST<DataType>::BinNodePointer subtreePtr) const;
/*------------------------------------------------------------------------
Inorder traversal auxiliary function.
Precondition: ostream out is open; subtreePtr points to a subtree
of this BST.
Postcondition: Subtree with root pointed to by subtreePtr has been
output to out.
------------------------------------------------------------------------*/
void graphAux(std::ostream & out, int indent,
BST<DataType>::BinNodePointer subtreeRoot) const;
/*------------------------------------------------------------------------
Graph auxiliary function.
Precondition: ostream out is open; subtreePtr points to a subtree
of this BST.
Postcondition: Graphical representation of subtree with root pointed
to by subtreePtr has been output to out, indented indent spaces.
------------------------------------------------------------------------*/
/***** Data Members *****/
BinNodePointer myRoot;
}; // end of class template declaration
//--- Definition of constructor
template <typename DataType>
inline BST<DataType>::BST()
: myRoot(0)
{}
//--- Definition of empty()
template <typename DataType>
inline bool BST<DataType>::empty() const
{ return myRoot == 0; }
//--- Definition of findId()
template <typename DataType>
DataType& BST<DataType>::findId(const int id ) const
{
typename BST<DataType>::BinNodePointer locptr = myRoot;
typename BST<DataType>::BinNodePointer parent =0;
bool found = false;
while (!found && locptr != 0)
{
if (locptr->data > id) // descend left
locptr = locptr->left;
else if (locptr->data < id) // descend right
locptr = locptr->right;
else // item found
found = true;
}
return found ? locptr->data : NULL;
}
template <typename DataType>
bool BST<DataType>::operator >(const int anotherId)const
{
typename BST<DataType>::BinNodePointer locptr;
return (locptr->data > anotherId);
}
template <typename DataType>
bool BST<DataType>::operator < (const int anotherId)const
{
typename BST<DataType>::BinNodePointer locptr;
return (locptr->data < anotherId);
}
//--- Definition of search()
template <typename DataType>
bool BST<DataType>::search(const DataType & item) const
{
typename BST<DataType>::BinNodePointer locptr = myRoot;
typename BST<DataType>::BinNodePointer parent =0;
/* BST<DataType>::BinNodePointer locptr = myRoot;
parent = 0; */ //falta el typename en la declaracion original
bool found = false;
while (!found && locptr != 0)
{
if (item < locptr->data) // descend left
locptr = locptr->left;
else if (locptr->data < item) // descend right
locptr = locptr->right;
else // item found
found = true;
}
return found;
}
//--- Definition of insert()
template <typename DataType>
inline void BST<DataType>::insert(const DataType & item)
{
typename BST<DataType>::BinNodePointer
locptr = myRoot, // search pointer
parent = 0; // pointer to parent of current node
bool found = false; // indicates if item already in BST
while (!found && locptr != 0)
{
parent = locptr;
if (item < locptr->data) // descend left
locptr = locptr->left;
else if (locptr->data < item) // descend right
locptr = locptr->right;
else // item found
found = true;
}
if (!found)
{ // construct node containing item
locptr = new typename BST<DataType>::BinNode(item);
if (parent == 0) // empty tree
myRoot = locptr;
else if (item < parent->data ) // insert to left of parent
parent->left = locptr;
else // insert to right of parent
parent->right = locptr;
}
else
std::cout << "Item already in the tree\n";
}
//--- Definition of remove()
template <typename DataType>
void BST<DataType>::remove(const DataType & item)
{
bool found; // signals if item is found
typename BST<DataType>::BinNodePointer
x, // points to node to be deleted
parent; // " " parent of x and xSucc
search2(item, found, x, parent);
if (!found)
{
std::cout << "Item not in the BST\n";
return;
}
//else
if (x->left != 0 && x->right != 0)
{ // node has 2 children
// Find x's inorder successor and its parent
typename BST<DataType>::BinNodePointer xSucc = x->right;
parent = x;
while (xSucc->left != 0) // descend left
{
parent = xSucc;
xSucc = xSucc->left;
}
// Move contents of xSucc to x and change x
// to point to successor, which will be removed.
x->data = xSucc->data;
x = xSucc;
} // end if node has 2 children
// Now proceed with case where node has 0 or 2 child
typename BST<DataType>::BinNodePointer
subtree = x->left; // pointer to a subtree of x
if (subtree == 0)
subtree = x->right;
if (parent == 0) // root being removed
myRoot = subtree;
else if (parent->left == x) // left child of parent
parent->left = subtree;
else // right child of parent
parent->right = subtree;
delete x;
}
//--- Definition of inorder()
template <typename DataType>
inline void BST<DataType>::inorder(std::ostream & out) const
{
inorderAux(out, myRoot);
}
//--- Definition of graph()
template <typename DataType>
inline void BST<DataType>::graph(std::ostream & out) const
{ graphAux(out, 0, myRoot); }
//--- Definition of search2()
template <typename DataType>
void BST<DataType>::search2(const DataType & item, bool & found,
BST<DataType>::BinNodePointer & locptr,
BST<DataType>::BinNodePointer & parent) const
{
locptr = myRoot;
parent = 0;
found = false;
while (!found && locptr != 0)
{
if (item < locptr->data) // descend left
{
parent = locptr;
locptr = locptr->left;
}
else if (locptr->data < item) // descend right
{
parent = locptr;
locptr = locptr->right;
}
else // item found
found = true;
}
}
//--- Definition of inorderAux()
template <typename DataType>
void BST<DataType>::inorderAux(std::ostream & out,
BST<DataType>::BinNodePointer subtreeRoot) const
{
if (subtreeRoot != 0)
{
inorderAux(out, subtreeRoot->left); // L operation
out << subtreeRoot->data << " "; // V operation
inorderAux(out, subtreeRoot->right); // R operation
}
}
//--- Definition of graphAux()
template <typename DataType>
void BST<DataType>::graphAux(std::ostream & out, int indent,
BST<DataType>::BinNodePointer subtreeRoot) const
{
if (subtreeRoot != 0)
{
graphAux(out, indent + 8, subtreeRoot->right);
out << std::setw(indent) << " " << subtreeRoot->data << std::endl;
graphAux(out, indent + 8, subtreeRoot->left);
}
}
#endif
答案 0 :(得分:1)
我不太确定你为什么想要超载&gt;和&lt;在这种情况下,但也许我不太明白这个问题。看起来您打算拥有几种不同类型的树节点,所有树节点都继承自DataType
。如果是这种情况,只需将const成员函数添加到DataType
基类:
class DataType
{
private:
mutable int internalID;
// ...
public:
const int id() const { return internalID; }
// ...
virtual ~DataType();
};
现在,在findID
循环中,您只需使用:
while (!found && locptr != 0)
{
if (locptr->data.id() > id)
{
locptr = locptr->left;
}
else if (locptr->data.id() < id)
{
locptr = locptr->right;
}
else
{
found = true;
}
}
而且您不必经历操作符重载的所有不必要的麻烦。
答案 1 :(得分:1)
运算符重载在这里没有意义。
会员功能
bool BST<DataType>::operator >(const int anotherId)const;
基本上意味着将整个树与int进行比较,这不是我认为你的目标。你可能想确保你有&lt;为数据类型定义,然后还添加类似
的节点类template<typename type>
friend bool operator>(const BST<type>::node&, BST<type>::const node&);
至少我的两分钱。
答案 2 :(得分:0)