我正在使用Tensorflow并实现了k均值聚类算法。一切都运行良好,但如果我想在list
中使用几个提取来运行会话,我总是会收到错误,list
无法转换为Tensor
或{ {1}}。
documentation明确表示,我可以使用列表调用Operation
。我做错了吗?
以下是源代码:
Session.run()
以下是错误消息:
import tensorflow as tf
import numpy as np
def tf_k_means(k, data, eps_=0.1):
eps = tf.constant(eps_)
cluster_means = tf.placeholder(tf.float32, [None, 2])
tf_data = tf.placeholder(tf.float32, [None, 2], name='data')
model = tf.initialize_all_variables()
expanded_data = tf.expand_dims(tf_data, 0)
expanded_means = tf.expand_dims(cluster_means, 1)
distances = tf.reduce_sum(tf.square(tf.sub(expanded_means, expanded_data)), 2)
mins = tf.to_int32(tf.argmin(distances, 0))
clusters = tf.dynamic_partition(tf_data, mins, k)
old_cluster_means = tf.identity(cluster_means)
new_means = tf.concat(0, [tf.expand_dims(tf.reduce_mean(cluster, 0), 0) for cluster in clusters])
clusters_moved = tf.reduce_sum(tf.square(tf.sub(old_cluster_means, new_means)), 1)
converged = tf.reduce_all(tf.less(clusters_moved, eps))
cms = data[np.random.randint(data.shape[0],size=k), :]
with tf.Session() as sess:
sess.run(model)
conv = False
while not conv:
#####################################
# THE FOLLOWING LINE DOES NOT WORK: #
#####################################
(cs, cms, conv) = sess.run([clusters, new_means, converged],
feed_dict={tf_data: data, cluster_means: cms})
return cs, cms
答案 0 :(得分:2)
tf.dynamic_partition
会返回list of Tensors,因此clusters
本身就是一个列表。
clusters = tf.dynamic_partition(tf_data, mins, k)
当你将该列表提供给另一个列表中的sess.run时,我认为这就是你遇到问题的地方。你可以尝试一下:
sess.run(clusters + [new_means, converged], ...