我想遍历DataFrame的行并将值分配给新的DataFrame。我间接完成了这项任务:
#first I read the data from df1 and assign it to df2 if something happens
counter = 0 #line1
for index,row in df1.iterrows(): #line2
value = row['df1_col'] #line3
value2 = row['df1_col2'] #line4
#try unzipping a file (pseudo code)
df2.loc[counter,'df2_col'] = value #line5
counter += 1 #line6
#except
print("Error, could not unzip {}") #line7
#then I set the desired index for df2
df2 = df2.set_index(['df2_col']) #line7
有没有办法直接在第5行中将值分配给df2的索引?对不起我的原始问题不清楚。我正在根据发生的事情创建一个索引。
答案 0 :(得分:3)
有很多方法可以做到这一点。根据您的代码,您所做的就是创建一个空的df2
数据框,其索引值为df1.df1_col
。你可以直接这样做:
df2 = pd.DataFrame([], df1.df1_col)
# ^ ^
# | |
# specifies no data, yet |
# defines the index
如果您担心必须过滤df1
,那么您可以执行以下操作:
# cond is some boolean mask representing a condition to filter on.
# I'll make one up for you.
cond = df1.df1_col > 10
df2 = pd.DataFrame([], df1.loc[cond, 'df1_col'])
答案 1 :(得分:0)
无需迭代,您可以这样做:
df2.index = df1['df1_col']
如果您真的想要迭代,请将其保存到列表并设置索引。