我在解决Problem 75 in Project Euler时得到了意想不到的结果。我的代码确实找到了正确的解决方案,但它表现得很奇怪。
我的解决方案包括遍历毕达哥拉斯树(Barning's matrices),直到达到周界限制,计算周长假设每个值的次数,最后计算仅发生一次的周长。我公认的不整洁但功能正常的代码是:
(defparameter *barning-matrixes*
'(#(1 -2 2) #(2 -1 2) #(2 -2 3)
#(1 2 2) #(2 1 2) #(2 2 3)
#(-1 2 2) #(-2 1 2) #(-2 2 3)))
(defparameter *lengths* (make-array 1500001 :initial-element 0))
(defun expand-node (n)
"Takes a primitive Pythagorean triple in a vector and traverses subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(let ((perimeter (reduce #'+ n)))
(unless (> perimeter 1500000)
(let ((next-nodes (mapcar #'(lambda (x)
(reduce #'+ (map 'vector #'* n x))) *barning-matrixes*)))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(expand-node (subseq next-nodes 0 3))
(expand-node (subseq next-nodes 3 6))
(expand-node (subseq next-nodes 6 9))))))
(expand-node #(3 4 5)) ; Takes too darn long :-(
(count 1 *lengths*)
我预计树扩展会在几毫秒内运行,但扩展节点功能需要8.65秒 - 比预期的要多得多 - 来遍历一棵不太大的树。
然而,当我调整代码以移除向量时,我感到很惊讶......
(defparameter *barning-matrixes*
'((1 -2 2) (2 -1 2) (2 -2 3)
(1 2 2) (2 1 2) (2 2 3)
(-1 2 2) (-2 1 2) (-2 2 3)))
(defparameter *lengths* (make-array 1500001 :initial-element 0))
(defun expand-node (n)
"Takes a primitive Pythagorean triple in a list and traverses subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(let ((perimeter (reduce #'+ n)))
(unless (> perimeter 1500000)
(let ((next-nodes (mapcar #'(lambda (x) (reduce #'+ (mapcar #'* n x))) *barning-matrixes*)))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(expand-node (subseq next-nodes 0 3))
(expand-node (subseq next-nodes 3 6))
(expand-node (subseq next-nodes 6 9))))))
(expand-node '(3 4 5)) ; Much faster, but why?!
(count 1 *lengths*)
......并且移动速度非常快,只需35毫秒。我对这种巨大的差异很感兴趣,并希望有人可以解释为什么会发生这种情况。
谢谢, 圣保罗
PS:我正在使用CCL。
答案 0 :(得分:3)
您没有说明您正在使用哪种实施方式。
你需要找出时间花在哪里。
但对我来说,看起来列表的MAP
的实现和与Common Lisp中的新向量相等的向量可能效率非常低。
即使在使用具有一些开销的新向量时,实现也会快得多。
尝试将向量操作实现为LOOP并进行比较:
(loop with v = (make-array (length n))
for n1 across n
for x1 across x
for i from 0
do (setf (aref v i) (* n1 x1))
finally (return v))
这个更快的版本也适用,但已经用向量操作替换了列表操作:
(defparameter *barning-matrixes*
#(#(1 -2 2) #(2 -1 2) #(2 -2 3) #(1 2 2) #(2 1 2) #(2 2 3) #(-1 2 2) #(-2 1 2) #(-2 2 3)))
(defparameter *lengths* (make-array 1500001 :initial-element 0))
(defun expand-node (n)
"Takes a primitive Pythagorean triple in a vector and traverses subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(let ((perimeter (reduce #'+ n)))
(unless (> perimeter 1500000)
(let ((next-nodes
(loop with v = (make-array (length *barning-matrixes*))
for e across *barning-matrixes*
for i from 0
do (setf (aref v i)
(reduce #'+
(loop with v = (make-array (length n))
for n1 across n
for x1 across e
for i from 0
do (setf (aref v i) (* n1 x1))
finally (return v))))
finally (return v))))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(expand-node (subseq next-nodes 0 3))
(expand-node (subseq next-nodes 3 6))
(expand-node (subseq next-nodes 6 9))))))
(time (expand-node #(3 4 5)))
让我们来看看你的代码:
(defun expand-node (n)
; here we don't know of which type N is. You call it from the toplevel
; with a vector, but recursive calls call it with a list
"Takes a primitive Pythagorean triple in a vector and traverses
subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(let ((perimeter (reduce #'+ n)))
(unless (> perimeter 1500000)
(let ((next-nodes (mapcar #'(lambda (x) ; this mapcar creates a list
(reduce #'+
(map 'vector
#'*
n ; <- list or vector
x))) ; <- vector
*barning-matrixes*)))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(expand-node (subseq next-nodes 0 3)) ; this subseq returns a list most of the times...
(expand-node (subseq next-nodes 3 6))
(expand-node (subseq next-nodes 6 9))))))
所以你大多数时候用一个列表和一个向量来调用MAP
。
结果向量的大小是多少? MAP必须通过遍历列表或通过其他方式找出。结果向量长度是参数序列长度中最短的。然后它必须迭代列表和向量。如果MAP现在使用通用序列操作,则对列表的元素访问始终遍历列表。显然,可以编写一个优化版本,它可以更快地完成所有操作,但Common Lisp实现可能会选择仅提供MAP的通用实现...
答案 1 :(得分:3)
欢迎来到Common Lisp优化的复杂性! 首先要注意的是不同实现所执行的不同程序优化策略:我在SBCL中尝试了您的示例,并且它们在几乎相同的时间内执行效率非常高,而在CCL中,矢量版本的执行速度比列表版本。我不知道您尝试过哪种实现,但您可以尝试使用不同的实现来查看非常不同的执行时间。
在CCL的一些测试中,在我看来,主要问题来自于这种形式:
(map 'vector #'* n x)
执行速度比相应的列表版本慢得多:
(mapcar #'* n x)
使用time
我已经看到矢量版本很多了。
只需使用辅助向量更改map
和map-into
即可确认第一印象。实际上,CCL中的以下版本比列表版本稍快一些:
(defun expand-node (n)
"Takes a primitive Pythagorean triple in a vector and traverses subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(let ((perimeter (reduce #'+ n))
(temp-vector (make-array 3 :initial-element 0)))
(unless (> perimeter 1500000)
(let ((next-nodes (mapcar #'(lambda (x)
(reduce #'+ (map-into temp-vector #'* n x))) *barning-matrixes*)))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(expand-node (subseq next-nodes 0 3))
(expand-node (subseq next-nodes 3 6))
(expand-node (subseq next-nodes 6 9))))))
答案 2 :(得分:2)
在SBCL上检查矢量#(1 2 3)给出:
Dimensions: (3)
Element type: T
Total size: 3
Adjustable: NIL
Fill pointer: NIL
Contents:
0: 1
1: 2
2: 3
您可以看到存储的数据多于列表中的数据,即使实现的确切内部表示因实现而异。对于像示例一样继续复制的小向量,最终可能会分配比列表更多的内存,这在下面的字节consed 行中可见。分配内存有助于运行时间。在我的测试中,请注意时间差异不如测试中那么大。
;; VECTORS
(time (expand-node #(3 4 5)))
;; Evaluation took:
;; 2.060 seconds of real time
;; 2.062500 seconds of total run time (1.765625 user, 0.296875 system)
;; [ Run times consist of 0.186 seconds GC time, and 1.877 seconds non-GC time. ]
;; 100.10% CPU
;; 4,903,137,055 processor cycles
;; 202,276,032 bytes consed
;; LISTS
(time (expand-node* '(3 4 5)))
;; Evaluation took:
;; 0.610 seconds of real time
;; 0.609375 seconds of total run time (0.609375 user, 0.000000 system)
;; [ Run times consist of 0.016 seconds GC time, and 0.594 seconds non-GC time. ]
;; 99.84% CPU
;; 1,432,603,387 processor cycles
;; 80,902,560 bytes consed
答案 3 :(得分:2)
在我尝试优化代码时,每个人都已经回答过了,所以我只是把这个版本放在这里,而不必费心解释太多。它应该运行得非常快,至少在SBCL上。
(declaim (optimize (speed 3) (safety 0) (debug 0)))
(declaim (type (simple-array (simple-array fixnum 1) 1) *barning-matrixes*))
(defparameter *barning-matrixes*
(map '(simple-array (simple-array fixnum 1) 1)
(lambda (list)
(make-array 3 :element-type 'fixnum
:initial-contents list))
'((1 -2 2) (2 -1 2) (2 -2 3)
(1 2 2) (2 1 2) (2 2 3)
(-1 2 2) (-2 1 2) (-2 2 3))))
(declaim (type (simple-array fixnum 1) *lengths*))
(defparameter *lengths* (make-array 1500001 :element-type 'fixnum
:initial-element 0))
(declaim (ftype (function ((simple-array fixnum 1))) expand-node))
(defun expand-node (n)
"Takes a primitive Pythagorean triple in a vector and traverses subsequent nodes in the the tree of primitives until perimeter > 1,500,000"
(loop with list-of-ns = (list n)
for n = (pop list-of-ns)
while n
do (let ((perimeter (let ((result 0))
(declare (type fixnum result))
(dotimes (i (length n) result)
(incf result (aref n i))))))
(declare (type fixnum perimeter))
(unless (> perimeter 1500000)
(let ((next-nodes
(let ((result (list)))
(dotimes (matrix 9 (nreverse result))
(let ((matrix (aref *barning-matrixes* matrix)))
(push (let ((result 0))
(declare (type fixnum result))
(dotimes (i 3 result)
(incf result
(the fixnum
(* (the fixnum (aref matrix i))
(the fixnum (aref n i)))))))
result))))))
(declare (type list next-nodes))
(loop for i from perimeter to 1500000 by perimeter
do (incf (aref *lengths* i)))
(dotimes (i 3)
(push (make-array 3 :element-type 'fixnum
:initial-contents (list (pop next-nodes)
(pop next-nodes)
(pop next-nodes)))
list-of-ns))))))
(values))
在我的慢速笔记本电脑上,
CL-USER> (load (compile-file #P"e75.lisp"))
; ...compilation notes...
CL-USER> (time (expand-node (make-array 3 :element-type 'fixnum
:initial-contents '(3 4 5))))
Evaluation took:
0.274 seconds of real time
0.264000 seconds of total run time (0.264000 user, 0.000000 system)
96.35% CPU
382,768,596 processor cycles
35,413,600 bytes consed
; No values
CL-USER> (count 1 *lengths*)
161667 (18 bits, #x27783)
原始代码使用向量运行大约1.8秒,使用列表运行0.8秒。