试图模仿Excel的SUMPRODUCT功能:
SUMPRODUCT(v1, v2, ..., vN) =
v1[0]*v2[0]*...*vN[0] + v1[1]*v2[1]*...*vN[1] + ... + v1[n]*v2[n]*...*vN[n]
其中n是每个向量中元素的数量。
这类似于点积,但适用于多个向量。我阅读了常规点积的the very detailed discussion,但我不知道如何将它干净地扩展到多个向量。作为参考,我正在复制那里提出的优化代码,我将其(通常)移植到Python 3.BTW,对于dot产品,最后一种方法仍然在P3K中获胜。
def d0(v1,v2):
"""
d0 is Nominal approach:
multiply/add in a loop
"""
out = 0
for k in range(len(v1)):
out += v1[k] * v2[k]
return out
def d1(v1,v2):
"""
d1 uses a map
"""
return sum(map(mul,v1,v2))
def d3(v1,v2):
"""
d3 uses a starmap (itertools) to apply the mul operator on an zipped (v1,v2)
"""
return sum(starmap(mul,zip(v1,v2)))
答案 0 :(得分:19)
import operator
def sumproduct(*lists):
return sum(reduce(operator.mul, data) for data in zip(*lists))
for python 3
import operator
import functools
def sumproduct(*lists):
return sum(functools.reduce(operator.mul, data) for data in zip(*lists))
答案 1 :(得分:7)
Map the list to create a list of products, and then sum it.
This can be done in one line:
{
ITime_2++;
try
{
Connect.Open();
string Sql = "INSERT INTO Road_Record (Defined_Speed, Steering, Distance_Position, Road_Marking, Sign_Post) values ('" + Highway_Speed_Limit + "','" + Convert.ToInt32(Steering_Slider.Value) + "','" + (int)IDistance + "','" + Road_Markings + "','" + Highway_Signs + "')";
using (SqlCommand cmdp = new SqlCommand(Sql, Connect))
{
cmdp.ExecuteNonQuery();
}
Connect.Close();
}
catch (Exception ex)
{
Connect.Close();
MessageBox.Show(ex.Message);
}
}
答案 2 :(得分:7)
良好的旧清单理解怎么样? (如@Turksarama所述,这仅适用于两个列表)
sum([x * y for x, y in zip(*lists)])
在Python 3.6中进行测试:
In [532]: import random
In [534]: x = [random.randint(0,100) for _ in range(100)]
In [535]: y = [random.randint(0,100) for _ in range(100)]
In [536]: lists = x, y
使用列表推导
In [543]: %timeit(sum([x * y for x, y in zip(*lists)]))
8.73 µs ± 24.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
请注意,“元组”理解为slower
In [537]: %timeit(sum(x * y for x, y in zip(*lists)))
10.5 µs ± 170 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
使用map
In [539]: %timeit(sum(map(lambda xi, yi: xi * yi, x, y)))
12.3 µs ± 144 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
使用functools.reduce
In [542]: %timeit(sum(functools.reduce(operator.mul, data) for data in zip(*lists)))
38.6 µs ± 330 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)