我有一个pandas数据框,我在Python中从defaultdict
读取,但有些列的长度不同。以下是数据的外观:
Date col1 col2 col3 col4 col5
01-01-15 5 12 1 -15 10
01-02-15 7 0 9 11 7
01-03-15 6 1 2 18
01-04-15 9 8 10
01-05-15 -4 7
01-06-15 -11 -1
01-07-15 6
我可以像NaN
那样用空白填充空白:
pd.DataFrame.from_dict(pred_dict, orient='index').T
给出了:
Date col1 col2 col3 col4 col5
01-01-15 5 12 1 -15 10
01-02-15 7 0 9 11 7
01-03-15 NaN 6 1 2 18
01-04-15 NaN 9 8 10 NaN
01-05-15 NaN -4 NaN 7 NaN
01-06-15 NaN -11 NaN -1 NaN
01-07-15 NaN 6 NaN NaN NaN
然而,我真正想要的是一种预先添加NaN
而不是将它们附加到最后的方法,以便数据看起来像这样:
Date col1 col2 col3 col4 col5
01-01-15 NaN 12 NaN NaN NaN
01-02-15 NaN 0 NaN -15 NaN
01-03-15 NaN 6 NaN 11 NaN
01-04-15 NaN 9 1 2 NaN
01-05-15 NaN -4 9 10 10
01-06-15 5 -11 1 7 7
01-07-15 7 6 8 -1 18
有一种简单的方法吗?
您可以使用以下代码重新创建字典:
import pandas as pd
from collections import defaultdict
d = defaultdict(list)
d["Date"].extend([
"01-01-15",
"01-02-15",
"01-03-15",
"01-04-15",
"01-05-15",
"01-06-15",
"01-07-15"
])
d["col1"].extend([5, 7])
d["col2"].extend([12, 0, 6, 9, -4, -11, 6])
d["col3"].extend([1, 9, 1, 8])
d["col4"].extend([-15, 11, 2, 10, 7, -1])
d["col5"].extend([10, 7, 18])
答案 0 :(得分:4)
您可以使用Series.shift
来演示Series / DataFrame。遗憾的是,您无法传递句点数组 - 您必须将每列移动一个整数值。
s = df.isnull().sum()
for col, periods in s.iteritems():
df[col] = df[col].shift(periods)
答案 1 :(得分:4)
对您的earlier question:
的itertools解决方案进行了一些修改pd.DataFrame(list(itertools.zip_longest(*[reversed(i) for i in d.values()]))[::-1], columns=d.keys()).sort_index(axis=1)
Out[143]:
Date col1 col2 col3 col4 col5
0 01-01-15 NaN 12 NaN NaN NaN
1 01-02-15 NaN 0 NaN -15.0 NaN
2 01-03-15 NaN 6 NaN 11.0 NaN
3 01-04-15 NaN 9 1.0 2.0 NaN
4 01-05-15 NaN -4 9.0 10.0 10.0
5 01-06-15 5.0 -11 1.0 7.0 7.0
6 01-07-15 7.0 6 8.0 -1.0 18.0
答案 2 :(得分:2)
答案 3 :(得分:0)
这是一种矢量化方法,使用pd.DataFrame.from_dict
来获取通常情况下的数据帧。一旦我们获得了常规的2D
数据,就可以轻松地以矢量化的方式翻转和屏蔽并获得所需的输出数据帧。
下面列出了实施 -
# Get the normal case output
df = pd.DataFrame.from_dict(d, orient='index').T
# Use masking to flip and select flipped elements to re-create expected df
colmask = df.columns!='Date'
arr = np.array(df.ix[:,colmask].values, dtype=np.float).T
mask = ~np.isnan(arr)
out_arr = np.full(mask.shape,np.nan)
out_arr[mask[:,::-1]] = arr[mask]
df.ix[:,colmask] = out_arr.T
示例运行 -
In [209]: d.values()
Out[209]:
[[-15, 11, 2, 10, 7, -1],
[10, 7, 18],
[12, 0, 6, 9, -4, -11, 6],
[1, 9, 1, 8],
[5, 7],
['01-01-15',
'01-02-15',
'01-03-15',
'01-04-15',
'01-05-15',
'01-06-15',
'01-07-15']]
In [210]: df
Out[210]:
col4 col5 col2 col3 col1 Date
0 NaN NaN 12 NaN NaN 01-01-15
1 -15 NaN 0 NaN NaN 01-02-15
2 11 NaN 6 NaN NaN 01-03-15
3 2 NaN 9 1 NaN 01-04-15
4 10 10 -4 9 NaN 01-05-15
5 7 7 -11 1 5 01-06-15
6 -1 18 6 8 7 01-07-15