AWS Data Pipeline MySQL Nulls sed shell命令活动MIGRAINE

时间:2016-07-18 11:05:11

标签: mysql sql amazon-web-services amazon-s3 amazon-data-pipeline

有以下情况:

每天都需要将SQL表传输到MySQL数据库。 我尝试使用CopyActivity使用Data Pipeline,但导出的CSV有空格而不是\ N或NULL,因此MySQL将这些字段导入为“”,这对我们的应用程序不利。

然后我尝试了稍微不同的方法。 通过CopyActivity将表导出到S3,ShellCommandActivity下载文件,执行下面的脚本并将文件上传到s3:

#!/bin/bash
sed -i -e 's/^,/\\N,/' -e 's/,$/,\\N/' -e 's/,,/,\\N,/g' -e 's/,,/,\\N,/g' ${INPUT1_STAGING_DIR}/*.csv |cat ${INPUT1_STAGING_DIR}/*.csv > ${OUTPUT1_STAGING_DIR}/sqltable.csv

上面的脚本在我的测试linux实例上完美运行,但是当它在临时EC2资源上执行时没有任何反应。在输出s3 datanode上只有相同无用的带有空格的csv,我没有任何错误。

我无知我的错误以及为什么脚本与我的测试linux实例上的工作方式不同。

管道日志:

18 Jul 2016 10:23:06,470 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.taskrunner.TaskPoller: Executing: amazonaws.datapipeline.activity.ShellCommandActivity@515aa023
18 Jul 2016 10:23:06,648 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Begin Downloading files from S3 Path:s3://s3-bucket/mysqlexport/sqltable.csv to output/staging/df-09799242T7UHHPMT072T_input1_7c583c0755eb46f5b518feffa314fccd
18 Jul 2016 10:23:06,648 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Local File Relative compared to Input Root Path:s3://s3-bucket/mysqlexport/sqltable.csv is 
18 Jul 2016 10:23:06,648 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Download just the root file to the local dir. Updated File Relative compared to Input Root Path:s3://s3-bucket/mysqlexport/sqltable.csv is sqltable.csv
18 Jul 2016 10:23:06,649 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Begin Downloading S3 file s3://s3-bucket/mysqlexport/sqltable.csv to /media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_input1_7c583c0755eb46f5b518feffa314fccd/sqltable.csv
18 Jul 2016 10:23:06,824 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Completed Downloading files from S3 Path:s3://s3-bucket/mysqlexport/sqltable.csv to output/staging/df-09799242T7UHHPMT072T_input1_7c583c0755eb46f5b518feffa314fccd
18 Jul 2016 10:23:06,862 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.objects.CommandRunner: Executing command: #!/bin/bash
sed -i -e 's/^,/\\N,/' -e 's/,$/,\\N/' -e 's/,,/,\\N,/g' -e 's/,,/,\\N,/g' ${INPUT1_STAGING_DIR}/sqltable.csv |cat ${INPUT1_STAGING_DIR}/sqltable.csv > ${OUTPUT1_STAGING_DIR}/sqltable.csv
18 Jul 2016 10:23:06,865 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.objects.CommandRunner: configure ApplicationRunner with stdErr file: output/logs/df-09799242T7UHHPMT072T/ShellCommandActivityId_18OqM/@ShellCommandActivityId_18OqM_2016-07-18T10:18:38/@ShellCommandActivityId_18OqM_2016-07-18T10:18:38_Attempt=1/StdError  and stdout file :output/logs/df-09799242T7UHHPMT072T/ShellCommandActivityId_18OqM/@ShellCommandActivityId_18OqM_2016-07-18T10:18:38/@ShellCommandActivityId_18OqM_2016-07-18T10:18:38_Attempt=1/StdOutput
18 Jul 2016 10:23:06,866 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.objects.CommandRunner: Executing command: output/tmp/df-09799242T7UHHPMT072T-de05e7a112c440b4a42df69d554d8a9a/ShellCommandActivityId18OqM20160718T101838Attempt1_command.sh with env variables :{INPUT1_STAGING_DIR=/media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_input1_7c583c0755eb46f5b518feffa314fccd, OUTPUT1_STAGING_DIR=/media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e} with argument : null
18 Jul 2016 10:23:06,952 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Begin Uploading local directory:output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e to S3 s3://s3-bucket/mysqlexport/
18 Jul 2016 10:23:06,977 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Begin Upload single file to S3:s3://s3-bucket/mysqlexport/sqltable.csv
18 Jul 2016 10:23:06,978 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Begin upload of file /media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e/sqltable.csv to  S3 paths3://s3-bucket/mysqlexport/sqltable.csv
18 Jul 2016 10:23:07,040 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Completed upload of file /media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e/sqltable.csv to  S3 paths3://s3-bucket/mysqlexport/sqltable.csv
18 Jul 2016 10:23:07,040 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Completed uploading of all files
18 Jul 2016 10:23:07,040 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.S3Helper: Completed upload of local dir output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e to s3://s3-bucket/mysqlexport/
18 Jul 2016 10:23:07,040 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.StageFromS3Connector: cleaning up directory /media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_input1_7c583c0755eb46f5b518feffa314fccd
18 Jul 2016 10:23:07,050 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.connector.staging.StageInS3Connector: cleaning up directory /media/ephemeral0/mnt/taskRunner/output/staging/df-09799242T7UHHPMT072T_output1_7c8b2db30c16473f844db5eb21cb000e
18 Jul 2016 10:23:07,051 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.taskrunner.HeartBeatService: Finished waiting for heartbeat thread @DefaultShellCommandActivity1_2016-07-18T10:18:38_Attempt=1
18 Jul 2016 10:23:07,052 [INFO] (TaskRunnerService-resource:df-09799242T7UHHPMT072T_@ResourceId_x5OCd_2016-07-18T10:18:38-1) df-09799242T7UHHPMT072T amazonaws.datapipeline.taskrunner.TaskPoller: Work ShellCommandActivity took 0:0 to complete

1 个答案:

答案 0 :(得分:0)

不确定究竟是什么问题,bash脚本或shell命令都不喜欢管道。无论如何,首先要感谢TenG提醒我分别分析流程中的每一步而不是整体看待它。

基本上我没有下载脚本,而是在命令字段中输入了sed和copy命令。

sed -i -e 's/^,/\\\\N,/' -e 's/,,/,\\\\N,/g' -e 's/,$/,\\\\N/' ${INPUT1_STAGING_DIR}/sqltable.csv  
cp ${INPUT1_STAGING_DIR}/sqltable.csv ${OUTPUT1_STAGING_DIR}/sqltable.csv

无论如何,我仍然对AWS Pipeline感到失望,因为当它甚至不能识别csv文件中的标准MySQL空值(如\ N和NULL)时,他们会主张MySQL支持。如果我可以使用AWS Pipeline进行导出和导入,那将非常简单有效,但不幸的是,如果您的应用程序在空字段和NULL值之间产生差异,则不适合后者。