如何在Caffe中设置全局重量填充?

时间:2016-07-18 09:02:49

标签: machine-learning caffe

现在我逐层编写重量填充物,如

layer {
  name: "Convolution1"
  type: "Convolution"
  bottom: "data"
  top: "Convolution1"
  convolution_param {
    num_output: 20
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}

如何设置全局重量填充类型? 感谢。

1 个答案:

答案 0 :(得分:0)

目前似乎没有别的方法可以做到这一点。在caffe.proto文件中,NetParameter定义如下,其中没有default_weight_filler左右这样的选项。

message NetParameter {
  optional string name = 1; // consider giving the network a name
  // DEPRECATED. See InputParameter. The input blobs to the network.
  repeated string input = 3;
  // DEPRECATED. See InputParameter. The shape of the input blobs.
  repeated BlobShape input_shape = 8;

  // 4D input dimensions -- deprecated.  Use "input_shape" instead.
  // If specified, for each input blob there should be four
  // values specifying the num, channels, height and width of the input blob.
  // Thus, there should be a total of (4 * #input) numbers.
  repeated int32 input_dim = 4;

  // Whether the network will force every layer to carry out backward operation.
  // If set False, then whether to carry out backward is determined
  // automatically according to the net structure and learning rates.
  optional bool force_backward = 5 [default = false];
  // The current "state" of the network, including the phase, level, and stage.
  // Some layers may be included/excluded depending on this state and the states
  // specified in the layers' include and exclude fields.
  optional NetState state = 6;

  // Print debugging information about results while running Net::Forward,
  // Net::Backward, and Net::Update.
  optional bool debug_info = 7 [default = false];

  // The layers that make up the net.  Each of their configurations, including
  // connectivity and behavior, is specified as a LayerParameter.
  repeated LayerParameter layer = 100;  // ID 100 so layers are printed last.

  // DEPRECATED: use 'layer' instead.
  repeated V1LayerParameter layers = 2;
}