我希望将值矩阵转换为'位的矩阵。
我一直在寻找解决方案并找到this,这似乎是解决方案的一部分。 我会尝试解释我在寻找什么。 我有一个类似
的矩阵> x<-matrix(1:20,5,4)
> x
[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
我想转换成
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
因此对于行a&#34; 1&#34;中的每个值。在相应的栏目中。
如果我使用
> table(sequence(length(x)),t(x))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
这接近我正在寻找的东西,但为每个值返回一行。
我只需要将一行中的所有值合并为一行。 因为一个
> table(x)
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
给出了整个表的alls值,所以我需要做什么才能获得每行的值。
答案 0 :(得分:4)
bit_x = matrix(0, nrow = nrow(x), ncol = max(x))
for (i in 1:nrow(x)) {bit_x[i,x[i,]] = 1}
答案 1 :(得分:4)
让
(x <- matrix(c(1, 3), 2, 2))
[,1] [,2]
[1,] 1 1
[2,] 3 3
一种方法是
M <- matrix(0, nrow(x), max(x))
M[cbind(c(row(x)), c(x))] <- 1
M
# [,1] [,2] [,3]
# [1,] 1 0 0
# [2,] 0 0 1
在一行中:
replace(matrix(0, nrow(x), max(x)), cbind(c(row(x)), c(x)), 1).
按照你的方法,和@ Psidom的建议类似:
table(rep(1:nrow(x), ncol(x)), x)
# x
# 1 3
# 1 2 0
# 2 0 2
答案 2 :(得分:4)
以下是使用table()
函数的另一个选项:
table(row(x), x)
# x
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
# 2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
# 3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
# 4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
# 5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
答案 3 :(得分:2)
我们可以使用 reshape2 包。
library(reshape2)
# At first we make the matrix you provided
x <- matrix(1:20, 5, 4)
# then melt it based on first column
da <- melt(x, id.var = 1)
# then cast it
dat <- dcast(da, Var1 ~ value, fill = 0, fun.aggregate = length)
给了我们这个
Var1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
2 2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
3 3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
4 4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
5 5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1