我尝试向torch-dataframe添加并行数据加载器以添加torchnet compatibility。我已使用tnt.ParallelDatasetIterator和changed it,因此:
input
和target
键的表格中返回,以匹配tnt.Engine设置。 问题第二次调用enque
时出现错误:.../torch_distro/install/bin/luajit: not enough memory
。我目前只与mnist合作mnist-example。 enque
循环现在看起来像这样(带有调试内存输出):
-- `samplePlaceholder` stands in for samples which have been
-- filtered out by the `filter` function
local samplePlaceholder = {}
-- The enque does the main loop
local idx = 1
local function enqueue()
while idx <= size and threads:acceptsjob() do
local batch, reset = self.dataset:get_batch(batch_size)
if (reset) then
idx = size + 1
else
idx = idx + 1
end
if (batch) then
local serialized_batch = torch.serialize(batch)
-- In the parallel section only the to_tensor is run in parallel
-- this should though be the computationally expensive operation
threads:addjob(
function(argList)
io.stderr:write("\n Start");
io.stderr:write("\n 1: " ..tostring(collectgarbage("count")))
local origIdx, serialized_batch, samplePlaceholder = unpack(argList)
io.stderr:write("\n 2: " ..tostring(collectgarbage("count")))
local batch = torch.deserialize(serialized_batch)
serialized_batch = nil
collectgarbage()
collectgarbage()
io.stderr:write("\n 3: " .. tostring(collectgarbage("count")))
batch = transform(batch)
io.stderr:write("\n 4: " .. tostring(collectgarbage("count")))
local sample = samplePlaceholder
if (filter(batch)) then
sample = {}
sample.input, sample.target = batch:to_tensor()
end
io.stderr:write("\n 5: " ..tostring(collectgarbage("count")))
collectgarbage()
collectgarbage()
io.stderr:write("\n 6: " ..tostring(collectgarbage("count")))
io.stderr:write("\n End \n");
return {
sample,
origIdx
}
end,
function(argList)
sample, sampleOrigIdx = unpack(argList)
end,
{idx, serialized_batch, samplePlaceholder}
)
end
end
end
我撒了collectgarbage
并尝试删除不需要的任何物品。内存输出相当直接:
Start
1: 374840.87695312
2: 374840.94433594
3: 372023.79101562
4: 372023.85839844
5: 372075.41308594
6: 372023.73632812
End
循环enque
的函数是非有序的函数,它是微不足道的(第二个enque
抛出了内存错误):
iterFunction = function()
while threads:hasjob() do
enqueue()
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
if table.exact_length(sample) > 0 then
return sample
end
end
end
答案 0 :(得分:1)
所以问题是torch.serialize
,其中设置中的函数将整个数据集耦合到函数中。添加时:
serialized_batch = nil
collectgarbage()
collectgarbage()
问题解决了。我进一步想知道是什么占据了这么多的空间,罪魁祸首竟然是我在一个环境中定义了这个函数,这个环境中有一个与函数交织在一起的大数据集,大大增加了它的大小。这里是本地数据的原始定义
mnist = require 'mnist'
local dataset = mnist[mode .. 'dataset']()
-- PROBLEMATIC LINE BELOW --
local ext_resource = dataset.data:reshape(dataset.data:size(1),
dataset.data:size(2) * dataset.data:size(3)):double()
-- Create a Dataframe with the label. The actual images will be loaded
-- as an external resource
local df = Dataframe(
Df_Dict{
label = dataset.label:totable(),
row_id = torch.range(1, dataset.data:size(1)):totable()
})
-- Since the mnist package already has taken care of the data
-- splitting we create a single subsetter
df:create_subsets{
subsets = Df_Dict{core = 1},
class_args = Df_Tbl({
batch_args = Df_Tbl({
label = Df_Array("label"),
data = function(row)
return ext_resource[row.row_id]
end
})
})
}
事实证明,删除我突出显示的行会将内存使用量从 358 Mb 降低到 0.0008 Mb !我用来测试性能的代码是:
local mem = {}
table.insert(mem, collectgarbage("count"))
local ser_data = torch.serialize(batch.dataset)
table.insert(mem, collectgarbage("count"))
local ser_retriever = torch.serialize(batch.batchframe_defaults.data)
table.insert(mem, collectgarbage("count"))
local ser_raw_retriever = torch.serialize(function(row)
return ext_resource[row.row_id]
end)
table.insert(mem, collectgarbage("count"))
local serialized_batch = torch.serialize(batch)
table.insert(mem, collectgarbage("count"))
for i=2,#mem do
print(i-1, (mem[i] - mem[i-1])/1024)
end
最初产生了输出:
1 0.0082607269287109
2 358.23344707489
3 0.0017471313476562
4 358.90182781219
并在修复之后:
1 0.0094480514526367
2 0.00080204010009766
3 0.00090408325195312
4 0.010146141052246
我尝试使用setfenv
功能,但它没有解决问题。将序列化数据发送到线程仍然存在性能损失,但主要问题已得到解决,如果没有昂贵的数据检索器,则功能要小得多。