我想使用来自sklearn的StandardScaler的几个方法。是否可以在我的集合的某些列/功能上使用这些方法,而不是将它们应用于整个集合。
例如,该集合为data
:
data = pd.DataFrame({'Name' : [3, 4,6], 'Age' : [18, 92,98], 'Weight' : [68, 59,49]})
Age Name Weight
0 18 3 68
1 92 4 59
2 98 6 49
col_names = ['Name', 'Age', 'Weight']
features = data[col_names]
我适合并转换data
scaler = StandardScaler().fit(features.values)
features = scaler.transform(features.values)
scaled_features = pd.DataFrame(features, columns = col_names)
Name Age Weight
0 -1.069045 -1.411004 1.202703
1 -0.267261 0.623041 0.042954
2 1.336306 0.787964 -1.245657
但当然这些名字不是漂浮而是字符串,我不想将它们标准化。如何仅在列fit
和transform
上应用Age
和Weight
函数?
答案 0 :(得分:7)
首先创建数据框的副本:
scaled_features = data.copy()
不要在转化中包含名称列:
col_names = ['Age', 'Weight']
features = scaled_features[col_names]
scaler = StandardScaler().fit(features.values)
features = scaler.transform(features.values)
现在,不要创建新的数据框,但要将结果分配给这两列:
scaled_features[col_names] = features
print(scaled_features)
Age Name Weight
0 -1.411004 3 1.202703
1 0.623041 4 0.042954
2 0.787964 6 -1.245657
答案 1 :(得分:2)
v {0.2}中引入了ColumnTransformer,它将转换器应用于数组或熊猫DataFrame的指定列集。
import pandas as pd
data = pd.DataFrame({'Name' : [3, 4,6], 'Age' : [18, 92,98], 'Weight' : [68, 59,49]})
col_names = ['Name', 'Age', 'Weight']
features = data[col_names]
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
ct = ColumnTransformer([
('somename', StandardScaler(), ['Age', 'Weight'])
], remainder='passthrough')
ct.fit_transform(features)
NB:像Pipeline一样,它也有一个简写版本make_column_transformer,不需要命名变压器
-1.41100443, 1.20270298, 3.
0.62304092, 0.04295368, 4.
0.78796352, -1.24565666, 6.
答案 2 :(得分:0)
更加诡计多端的方法 -
from sklearn.preprocessing import StandardScaler
data[['Age','Weight']] = data[['Age','Weight']].apply(
lambda x: StandardScaler().fit_transform(x))
data
输出 -
Age Name Weight
0 -1.411004 3 1.202703
1 0.623041 4 0.042954
2 0.787964 6 -1.245657
答案 3 :(得分:0)
另一种选择是在缩放之前先删除“名称”列,然后再将其合并回去:
data = pd.DataFrame({'Name' : [3, 4,6], 'Age' : [18, 92,98], 'Weight' : [68, 59,49]})
from sklearn.preprocessing import StandardScaler
# Save the variable you don't want to scale
name_var = data['Name']
# Fit scaler to your data
scaler.fit(data.drop('Name', axis = 1))
# Calculate scaled values and store them in a separate object
scaled_values = scaler.transform(data.drop('Name', axis = 1))
data = pd.DataFrame(scaled_values, index = data.index, columns = data.drop('ID', axis = 1).columns)
data['Name'] = name_var
print(data)
答案 4 :(得分:0)
我找到的最简单的方法是:
from sklearn.preprocessing import StandardScaler
# I'm selecting only numericals to scale
numerical = temp.select_dtypes(include='float64').columns
# This will transform the selected columns and merge to the original data frame
temp.loc[:,numerical] = StandardScaler().fit_transform(temp.loc[:,numerical])
Age Name Weight
0 -1.411004 3 1.202703
1 0.623041 4 0.042954
2 0.787964 6 -1.245657