我目前正在尝试使用CUSPARSE库来加速HPCG实施。但是,在设备数据分配过程中,我似乎犯了一些错误。
这是导致 CUSPARSE_STATUS_MAPPING_ERROR 的代码段:
int HPC_sparsemv( CRS_Matrix *A_crs_d,
FP * x_d, FP * y_d)
{
FP alpha = 1.0f;
FP beta = 0.0f;
FP* vals = A_crs_d->vals;
int* inds = A_crs_d->col_ind;
int* row_ptr = A_crs_d->row_ptr;
/*generate Matrix descriptor for SparseMV computation*/
cusparseMatDescr_t matDescr;
cusparseCreateMatDescr(&matDescr);
cusparseStatus_t status;
/*hand off control to CUSPARSE routine*/
#ifdef DOUBLE
status = cusparseDcsrmv(cuspHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, A_crs_d->nrows,
A_crs_d->ncols,A_crs_d->nnz, &alpha, matDescr, vals, row_ptr,
inds, x_d, &beta, y_d);
#else
status = cusparseScsrmv(cuspHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, A_crs_d->nrows,
A_crs_d->ncols,A_crs_d->nnz, &alpha, matDescr, vals, row_ptr,
col_ind, x_d, &beta, y_d);
#endif
注意:FP是由条件编译保护包装的typedef,这意味着它在编译时被评估为float或double别名。
这是处理数据分配的函数:
int cudaAlloc(FP* r_d, FP* p_d, FP* Ap_d, FP* b_d, const FP* const b, FP * x_d, FP * const x,
struct CRS_Matrix* A_crs_d, int nrows, int ncols, int nnz){
std::cout << "Beginning device allocation..." << std::endl;
int size_r = nrows * sizeof(FP);
int size_c = ncols * sizeof(FP);
int size_nnz = nnz * sizeof(FP);
int allocStatus = 0;
/*device alloc r_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &r_d, size_r) );
/*device alloc p_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &p_d, size_c) );
/*device alloc Ap_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &Ap_d, size_r) );
/*device alloc b_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &b_d, size_r ) );
allocStatus |= (int) checkCuda( cudaMemcpy(b_d, b, size_r, cudaMemcpyHostToDevice));
/*device alloc x_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &x_d, size_r ) );
allocStatus |= (int) checkCuda( cudaMemcpy(x_d, x, size_r, cudaMemcpyHostToDevice));
/*device alloc A_crs_d*/
FP * valtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &valtmp, size_nnz) );
allocStatus |= (int) checkCuda( cudaMemcpy(valtmp, CRS->vals, size_nnz, cudaMemcpyHostToDevice) );
int * indtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &indtmp, nnz* sizeof(int)) );
allocStatus |= (int) checkCuda( cudaMemcpy(indtmp, CRS->col_ind,
nnz * sizeof(int) , cudaMemcpyHostToDevice) );
int * rowtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &rowtmp, (nrows + 1) * sizeof(int)) );
allocStatus |= (int) checkCuda( cudaMemcpy(rowtmp, CRS->row_ptr,
(nrows + 1) * sizeof(int), cudaMemcpyHostToDevice) );
allocStatus |= (int) checkCuda( cudaMallocHost( &A_crs_d, sizeof(CRS_Matrix)) );
A_crs_d->vals = valtmp;
A_crs_d->col_ind = indtmp;
A_crs_d->row_ptr = rowtmp;
A_crs_d->nrows = CRS->nrows;
A_crs_d->ncols = CRS->ncols;
A_crs_d->nnz = CRS->nnz;
std::cout << "Device allocation done." << std::endl;
return allocStatus;
}
在我第一次停在StackOverflow期间,我发现其他人发布了这个已解决的问题:Cusparse status mapping error while using cuda constant memory
但是,因为我没有在传递给csrmv()的参数上使用常量内存,而这些内存并没有解决我的问题。我还检查了数据完整性,设备上的CRS_Matrix与主机内存中的原始内容完全匹配。
我对此问题感到很茫然,并且无法找到任何可能表明CUDA工具包文档存在问题的内容,因此我们将非常感谢您的帮助。
提前致谢。
答案 0 :(得分:0)
您所显示的代码中存在一些错误。
不可能将指针参数传递给例程,对该指针执行cudaMalloc
操作,然后期望该结果显示在调用环境中。您对x_d
传递给b_d
的{{1}},A_crs_d
和cudaMallocHost
(以及cudaAlloc
)参数执行此操作。一种可能的解决方法是将这些参数作为例程中的双指针(**
)参数处理,并将指针的地址传递给例程。这允许修改的指针值显示在调用环境中。这实际上是一个正确的C编码问题,并不是特定于CUDA。
至少就cudaAlloc
而言,您似乎打算实施Ax=b
。在这种情况下,x
向量的长度是A
的列的数量,b
向量的长度是行 A
。在cudaAlloc
例程中,您将这两个分配为A
行的大小,因此这可能不正确。这也会影响后续cudaMemcpy
操作(大小)。
您显示的代码似乎仅针对double
情况进行了测试,因为您传递给每个调用的colum index参数存在差异(可能是float
和{{1} }})。无论如何,我已经围绕你所展示的内容构建了一个完整的代码(针对double
案例),加上上面的更改,它运行时没有错误,并为我生成了正确的结果:
double
注意:
目前还不清楚您在$ cat t1216.cu
#include <cusparse.h>
#include <iostream>
#define checkCuda(x) x
#ifdef USE_FLOAT
typedef float FP;
#else
#define DOUBLE
typedef double FP;
#endif
struct CRS_Matrix{
FP *vals;
int *col_ind;
int *row_ptr;
int ncols;
int nnz;
int nrows;
} *CRS;
cusparseHandle_t cuspHandle;
int HPC_sparsemv( CRS_Matrix *A_crs_d,
FP * x_d, FP * y_d)
{
FP alpha = 1.0f;
FP beta = 0.0f;
FP* vals = A_crs_d->vals;
int* inds = A_crs_d->col_ind;
int* row_ptr = A_crs_d->row_ptr;
/*generate Matrix descriptor for SparseMV computation*/
cusparseMatDescr_t matDescr;
cusparseCreateMatDescr(&matDescr);
cusparseStatus_t status;
/*hand off control to CUSPARSE routine*/
#ifdef DOUBLE
status = cusparseDcsrmv(cuspHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, A_crs_d->nrows,
A_crs_d->ncols,A_crs_d->nnz, &alpha, matDescr, vals, row_ptr,
inds, x_d, &beta, y_d);
#else
status = cusparseScsrmv(cuspHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, A_crs_d->nrows,
A_crs_d->ncols,A_crs_d->nnz, &alpha, matDescr, vals, row_ptr,
col_ind, x_d, &beta, y_d); // col_ind here should probably be inds
#endif
return (int)status;
}
int cudaAlloc(FP* r_d, FP* p_d, FP* Ap_d, FP** b_d, const FP* const b, FP ** x_d, FP * const x,
struct CRS_Matrix** A_crs_d, int nrows, int ncols, int nnz){
std::cout << "Beginning device allocation..." << std::endl;
int size_r = nrows * sizeof(FP);
int size_c = ncols * sizeof(FP);
int size_nnz = nnz * sizeof(FP);
int allocStatus = 0;
/*device alloc r_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &r_d, size_r) );
/*device alloc p_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &p_d, size_c) );
/*device alloc Ap_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) &Ap_d, size_r) );
/*device alloc b_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) b_d, size_r ) );
allocStatus |= (int) checkCuda( cudaMemcpy(*b_d, b, size_r, cudaMemcpyHostToDevice));
/*device alloc x_d*/
allocStatus |= (int) checkCuda( cudaMalloc((void **) x_d, size_c ) );
allocStatus |= (int) checkCuda( cudaMemcpy(*x_d, x, size_c, cudaMemcpyHostToDevice));
/*device alloc A_crs_d*/
FP * valtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &valtmp, size_nnz) );
allocStatus |= (int) checkCuda( cudaMemcpy(valtmp, CRS->vals, size_nnz, cudaMemcpyHostToDevice) );
int * indtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &indtmp, nnz* sizeof(int)) );
allocStatus |= (int) checkCuda( cudaMemcpy(indtmp, CRS->col_ind,
nnz * sizeof(int) , cudaMemcpyHostToDevice) );
int * rowtmp;
allocStatus |= (int) checkCuda( cudaMalloc((void **) &rowtmp, (nrows + 1) * sizeof(int)) );
allocStatus |= (int) checkCuda( cudaMemcpy(rowtmp, CRS->row_ptr,
(nrows + 1) * sizeof(int), cudaMemcpyHostToDevice) );
allocStatus |= (int) checkCuda( cudaMallocHost( A_crs_d, sizeof(CRS_Matrix)) );
(*A_crs_d)->vals = valtmp;
(*A_crs_d)->col_ind = indtmp;
(*A_crs_d)->row_ptr = rowtmp;
(*A_crs_d)->nrows = CRS->nrows;
(*A_crs_d)->ncols = CRS->ncols;
(*A_crs_d)->nnz = CRS->nnz;
std::cout << "Device allocation done." << std::endl;
return allocStatus;
}
int main(){
CRS = (struct CRS_Matrix *)malloc(sizeof(struct CRS_Matrix));
cusparseCreate(&cuspHandle);
// simple test matrix
#define M0_M 5
#define M0_N 5
FP m0_csr_vals[] = {2.0f, 1.0f, 1.0f, 2.0f, 1.0f, 1.0f, 2.0f, 1.0f, 1.0f, 2.0f, 1.0f, 1.0f, 2.0f};
int m0_col_idxs[] = { 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
int m0_row_ptrs[] = { 0, 2, 5, 8, 11, 13};
FP m0_d[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
int m0_nnz = 13;
FP *r_d, *p_d, *Ap_d, *b_d, *x_d;
FP *b = new FP[M0_N];
CRS_Matrix *A_crs_d;
CRS->vals = m0_csr_vals;
CRS->col_ind = m0_col_idxs;
CRS->row_ptr = m0_row_ptrs;
CRS->nrows = M0_M;
CRS->ncols = M0_N;
CRS->nnz = m0_nnz;
// Ax = b
// r_d, p_d, Ap_d ??
int stat = cudaAlloc(r_d, p_d, Ap_d, &b_d, b, &x_d, m0_d, &A_crs_d, M0_M, M0_N, m0_nnz);
std::cout << "cudaAlloc status: " << stat << std::endl;
stat = HPC_sparsemv( A_crs_d, x_d, b_d);
std::cout << "HPC_sparsemv status: " << stat << std::endl;
FP *results = new FP[M0_M];
cudaMemcpy(results, b_d, M0_M*sizeof(FP), cudaMemcpyDeviceToHost);
std::cout << "Results:" << std::endl;
for (int i = 0; i < M0_M; i++) std::cout << results[i] << std::endl;
return 0;
}
$ nvcc -o t1216 t1216.cu -lcusparse
t1216.cu(153): warning: variable "r_d" is used before its value is set
t1216.cu(153): warning: variable "p_d" is used before its value is set
t1216.cu(153): warning: variable "Ap_d" is used before its value is set
t1216.cu(153): warning: variable "r_d" is used before its value is set
t1216.cu(153): warning: variable "p_d" is used before its value is set
t1216.cu(153): warning: variable "Ap_d" is used before its value is set
$ cuda-memcheck ./t1216
========= CUDA-MEMCHECK
Beginning device allocation...
Device allocation done.
cudaAlloc status: 0
HPC_sparsemv status: 0
Results:
3
4
4
4
3
========= ERROR SUMMARY: 0 errors
$
例程中对r_d
,p_d
和Ap_d
的意图。我原样离开了他们。但如果您打算将它们用于某些事情,它们可能会受到我在上面1中描述的问题的影响。
如上所述,您传递给cudaAlloc
中的cusparse例程的参数中的float
与double
似乎不一致。特别是,列索引参数不匹配,HPC_sparsemv
版本对我来说似乎很明智,所以我使用了它。如果您使用double
,则可能需要修改该参数。
将来,我建议您提供完整的代码,就像我展示的那样,以证明失败。代码并不比你已经展示的代码多得多,而且它会让其他人更容易帮助你。