我有这样的数据帧(ID,频率A B C D E)
ID A B C D E
1 5 3 2 1 0
2 3 2 2 1 0
3 4 2 1 1 1
我想将这个数据帧转换为这样的基于测试的文档(ID和它们的频率ABCDE作为单个列中的单词)。然后我可以使用LDA算法来识别每个ID的热门话题。
ID Text
1 "A" "A" "A" "A" "A" "B" "B" "B" "C" "C" "D"
2 "A" "A" "A" "B" "B" "C" "C" "D"
3 "A" "A" "A" "A" "B" "B" "C" "D" "E"
答案 0 :(得分:1)
您可以像这样使用apply
和rep
:
apply(df[-1], 1, function(i) rep(names(df)[-1], i))
对于每一行,apply
向rep
函数提供重复每个变量名称的次数。这将返回一个向量列表:
[[1]]
[1] "A" "A" "A" "A" "A" "B" "B" "B" "C" "C" "D"
[[2]]
[1] "A" "A" "A" "B" "B" "C" "C" "D"
[[3]]
[1] "A" "A" "A" "A" "B" "B" "C" "D" "E"
每个列表元素都是data.frame的一行。
数据强>
df <- read.table(header=T, text="ID A B C D E
1 5 3 2 1 0
2 3 2 2 1 0
3 4 2 1 1 1")
答案 1 :(得分:1)
我们可以使用data.table
library(data.table)
DT <- setDT(df1)[,.(list(rep(names(df1)[-1], unlist(.SD)))) ,ID]
DT$V1
#[[1]]
#[1] "A" "A" "A" "A" "A" "B" "B" "B" "C" "C" "D"
#[[2]]
#[1] "A" "A" "A" "B" "B" "C" "C" "D"
#[[3]]
#[1] "A" "A" "A" "A" "B" "B" "C" "D" "E"
或base R
选项为split
lst <- lapply(split(df1[-1], df1$ID), rep, x=names(df1)[-1])
lst
#$`1`
#[1] "A" "A" "A" "A" "A" "B" "B" "B" "C" "C" "D"
#$`2`
#[1] "A" "A" "A" "B" "B" "C" "C" "D"
#$`3`
#[1] "A" "A" "A" "A" "B" "B" "C" "D" "E"
如果我们想要写下&#39; lst&#39;对于csv文件,一个选项是将list
转换为data.frame
,方法是在末尾添加NA
以使长度相等,同时转换为data.frame
(data.frame
是list
,长度相等(列))
res <- do.call(rbind, lapply(lst, `length<-`, max(lengths(lst))))
或使用stringi
library(stringi)
res <- stri_list2matrix(lst, byrow=TRUE)
然后使用write.csv
write.csv(res, "yourdata.csv", quote=FALSE, row.names = FALSE)