让我们说我有以下数据,我有兴趣按日期抓取数据类型为" ts"。当然,有些日期没有ts,我需要回到真正的'这些日期的价值。
dat = data.frame(dte = c("2011-01-01","2011-02-01","2011-03-01","2011-04-01","2011-05-01",
"2011-01-01","2011-02-01","2011-03-01"),
type = c("real","real","real","real","real","ts","ts","ts"),
value=rnorm(8))
dat
cpy = dat %>% dplyr::filter(type == "ts")
cpy
如何在dplyr中完成这样的事情。
预期输出为:
dte type value
"2011-01-01" ts ....
"2011-02-01" ts
"2011-03-01" ts
"2011-04-01" real
"2011-05-01" real
答案 0 :(得分:3)
您可以尝试使用基础包,
rbind(dat[dat$type == "ts",], dat[!unique(dat$dte) %in%
dat[dat$type == "ts","dte"], ])
# dte type value
#6 2011-01-01 ts -0.98109206
#7 2011-02-01 ts 1.67626166
#8 2011-03-01 ts -0.06997343
#4 2011-04-01 real 1.27243996
#5 2011-05-01 real -1.63594680
将type
的行等于ts
并rbind
来自real
类型的剩余日期。
答案 1 :(得分:2)
一个想法可能是group_by()
约会,并将值保持在type == "ts"
或何时,对于给定日期,没有type == "ts"
,保留其他值:
dat %>%
group_by(dte) %>%
filter(type == "ts" | !any(type == "ts"))
给出了:
#Source: local data frame [5 x 3]
#Groups: dte [5]
#
# dte type value
# <fctr> <fctr> <dbl>
#1 2011-04-01 real 0.2522234
#2 2011-05-01 real -0.8919211
#3 2011-01-01 ts 0.4356833
#4 2011-02-01 ts -1.2375384
#5 2011-03-01 ts -0.2242679
答案 2 :(得分:0)
使用dplyr
,我们也可以使用which.max
library(dplyr)
dat %>%
group_by(dte) %>%
slice(which.max(factor(type)))
# dte type value
# <fctr> <fctr> <dbl>
#1 2011-01-01 ts -0.5052456
#2 2011-02-01 ts -0.4038810
#3 2011-03-01 ts -1.5349627
#4 2011-04-01 real 1.6812035
#5 2011-05-01 real -0.9902754
或使用与data.table
library(data.table)
setDT(dat)[, .SD[which.max(factor(type))] , dte]
# dte type value
#1: 2011-01-01 ts -0.5052456
#2: 2011-02-01 ts -0.4038810
#3: 2011-03-01 ts -1.5349627
#4: 2011-04-01 real 1.6812035
#5: 2011-05-01 real -0.9902754