这个问题解释了Spark的随机拆分是如何工作的,How does Sparks RDD.randomSplit actually split the RDD,但我不明白火花是如何跟踪一个拆分中的值是什么,以便那些相同的值不会消失。进入第二次分裂。
如果我们看一下randomSplit的实现:
def randomSplit(weights: Array[Double], seed: Long): Array[DataFrame] = {
// It is possible that the underlying dataframe doesn't guarantee the ordering of rows in its
// constituent partitions each time a split is materialized which could result in
// overlapping splits. To prevent this, we explicitly sort each input partition to make the
// ordering deterministic.
val sorted = Sort(logicalPlan.output.map(SortOrder(_, Ascending)), global = false, logicalPlan)
val sum = weights.sum
val normalizedCumWeights = weights.map(_ / sum).scanLeft(0.0d)(_ + _)
normalizedCumWeights.sliding(2).map { x =>
new DataFrame(sqlContext, Sample(x(0), x(1), withReplacement = false, seed, sorted))
}.toArray
}
我们可以看到它创建了两个共享相同sqlContext和两个不同Sample(rs)的DataFrame。
这两个DataFrame如何相互通信,以便第一个中的值不包含在第二个中?
数据是否被提取两次? (假设sqlContext是从DB中选择的,是执行两次的选择吗?)。
答案 0 :(得分:4)
与采样RDD完全一样。
假设您拥有权重数组(0.6, 0.2, 0.2)
,Spark将为每个范围(0.0, 0.6), (0.6, 0.8), (0.8, 1.0)
生成一个DataFrame。
当需要读取结果DataFrame时,Spark将会遍历父DataFrame。对于每个项目,生成一个随机数,如果该数字落在指定范围内,则发出该项目。所有子DataFrame共享相同的随机数生成器(技术上,具有相同种子的不同生成器),因此随机数序列是确定性的。
对于您的上一个问题,如果您没有缓存父DataFrame,那么每次计算输出DataFrame时都会重新获取输入DataFrame的数据。