Java中的离散小波变换在图像中创建白点

时间:2016-07-14 09:36:48

标签: java image image-compression jpeg2000 dwt

在我的Java程序中,图像被加载到程序中,然后使用离散小波变换进行变换,结果系数用作输出图像的图像数据。

该过程适用于自然图像:http://imgur.com/Pk3kUs7

然而,如果我转换例如一个卡通图像,在近似子带的暗边缘上会出现白点:http://imgur.com/kLXyBvd

以下是forwardDWT的代码:

private int[][] transformPixels(int[][] pixels, int widthHeight) {
    double[][] temp_bank = new double[widthHeight][widthHeight];
    double a1 = -1.586134342;
    double a2 = -0.05298011854;
    double a3 = 0.8829110762;
    double a4 = 0.4435068522;

    // Scale coeff:
    double k1 = 0.81289306611596146; // 1/1.230174104914
    double k2 = 0.61508705245700002;// 1.230174104914/2
    for (int i = 0; i < 2; i++) {
        for (int col = 0; col < widthHeight; col++) {
            // Predict 1
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a1 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a1 * pixels[widthHeight - 2][col];

            // Update 1
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a2 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a2 * pixels[1][col];

            // Predict 2
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a3 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a3 * pixels[widthHeight - 2][col];

            // Update 2
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a4 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a4 * pixels[1][col];
        }

        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                if (row % 2 == 0)
                    temp_bank[col][row / 2] = k1 * pixels[row][col];
                else
                    temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];

            }
        }

        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                pixels[row][col] = (int) temp_bank[row][col];
            }
        }
    }
    return pixels;
}

这是使用提升方案实现的CDF9 / 7 fitlerbanks的DWT,类似于JPEG2000中的DWT。

该算法有两个限制:

  1. 只能处理灰度数据
  2. 图像的宽度和高度必须相同,且2 ^ n的乘积,例如256x256,512x512等。
  3. 因为灰度值可能计算错误,所以这里是加载图像,开始转换,将rgb值转换为灰度以及转换回rgb的其他代码:

    public BufferedImage openImage() throws InvalidWidthHeightException {
        try {
            int returnVal = fc.showOpenDialog(panel);
            if (returnVal == JFileChooser.APPROVE_OPTION) {
                File file = fc.getSelectedFile();
                BufferedImage temp = ImageIO.read(file);
                if (temp == null)
                    return null;
                int checkInt = temp.getWidth();
                boolean check = (checkInt & (checkInt - 1)) == 0;
                if (checkInt != temp.getHeight() & !check)
                    throw new InvalidWidthHeightException();
                int widthandHeight = temp.getWidth();
                image = new BufferedImage(widthandHeight, widthandHeight, BufferedImage.TYPE_BYTE_GRAY);
                Graphics g = image.getGraphics();
                g.drawImage(temp, 0, 0, null);
                g.dispose();
    
                return image;
    
            }
        } catch (IOException e) {
            System.out.println("Failed to load image!");
        }
        return null;
    
    }
    
    public void transform(int count) {
        int[][] pixels = getGrayValues(image);
        int transformedPixels[][];
        int width = pixels.length;
        transformedPixels = transformPixels(pixels, width);
        width/=2;
    
        for (int i = 1; i < count + 1; i++) {
            transformedPixels = transformPixels(transformedPixels, width);
            width/=2;
        }
        width = pixels.length;
        transformedImage = new BufferedImage(width, width, BufferedImage.TYPE_BYTE_GRAY);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < width; y++) {
                transformedImage.setRGB(x, y, tranformToRGB(transformedPixels[x][y]));
            }
        }
    
    }
    
    private int tranformToRGB(double d) {
        int value = (int) d;
        if (d < 0)
            d = 0;
        if (d > 255)
            d = 255;
        return 0xffffffff << 24 | value << 16 | value << 8 | value;
    }
    
    private int[][] getGrayValues(BufferedImage image2) {
        int[][] res = new int[image.getHeight()][image.getWidth()];
        int r, g, b;
        for (int i = 0; i < image.getWidth(); i++) {
            for (int j = 0; j < image.getHeight(); j++) {
                int value = image2.getRGB(i, j);
                r = (value >> 16) & 0xFF;
                g = (value >> 8) & 0xFF;
                b = (value & 0xFF);
                res[i][j] = (r + g + b) / 3;
            }
        }
        return res;
    }
    

    注意:由于图像的宽度和高度预计相同,我有时也只使用宽度作为高度。

    编辑:正如@stuhlo所建议的那样,我已经在forwardDWT中添加了对近似子带值的检查:

    for (int row = 0; row < widthHeight; row++) {
                for (int col = 0; col < widthHeight; col++) {
                    if (row % 2 == 0) {
                        double value = k1 * pixels[row][col];
                        if (value > 255)
                            value = 255;
                        if (value < 0)
                            value = 0;
                        temp_bank[col][row / 2] = value;
                    } else {
                        temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];
                    }
                }
            }
    

    不幸的是,现在水平细节的subabnd变黑了。

1 个答案:

答案 0 :(得分:1)

您的问题是由于子带样本需要存储的位数比原始图像的样本多。

我建议使用更大的数据类型来存储子带样本,并将它们归一化为8位值进行显示。