我想删除groupby对象的第n行,比如说最后一行。我可以使用# Debug mode disables concatenation and preprocessing of assets.
# This option may cause significant delays in view rendering with a large
# number of complex assets.
config.assets.debug = false
是否有类似的方法来删除第n行,或等效地获取除第n行以外的所有行?
答案 0 :(得分:3)
您可以找到所有nth
行的索引,然后按Index.difference
选择ix
:
import pandas as pd
df = pd.DataFrame({'A':[1,1,1,2,2,2],
'B':[4,5,6,7,8,9]})
print (df)
A B
0 1 4
1 1 5
2 1 6
3 2 7
4 2 8
5 2 9
print (df.ix[df.index.difference(df.groupby('A', as_index=False)['B'].nth(1).index)])
A B
0 1 4
2 1 6
3 2 7
5 2 9
idx = df.groupby('A', as_index=False)['B'].nth(1).index
print (idx)
Int64Index([1, 4], dtype='int64')
print (df.index.difference(idx))
Int64Index([0, 2, 3, 5], dtype='int64')
print (df.ix[df.index.difference(idx)])
A B
0 1 4
2 1 6
3 2 7
5 2 9
如果需要所有行而不是最后一行,请使用GroupBy.tail
:
print (df.ix[df.index.difference(df.groupby('A')['B'].tail(1).index)])
A B
0 1 4
1 1 5
3 2 7
4 2 8
<强>计时强>:
In [27]: %timeit (df.groupby('A').apply(lambda x: x.iloc[:-1, :]).reset_index(0, drop=True).sort_index())
100 loops, best of 3: 2.48 ms per loop
In [28]: %timeit (df.ix[df.index.difference(df.groupby('A')['B'].tail(1).index)])
1000 loops, best of 3: 1.29 ms per loop
In [29]: %timeit (df.ix[df.index.difference(df.groupby('A', as_index=False)['B'].nth(1).index)])
The slowest run took 4.42 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.48 ms per loop
答案 1 :(得分:0)
假设df
是您的数据框。
df.groupby(something_to_group_by).apply(lambda x: x.iloc[:-1, :]).reset_index(0, drop=True).sort_index()