我想要做的是通过每个过程使用全局变量。 但我的过程并没有采取全球价值观
import multiprocessing
count = 0
def smile_detection(thread_name):
global count
for x in range(10):
count +=1
print thread_name,count
return count
x = multiprocessing.Process(target=smile_detection, args=("Thread1",))
y = multiprocessing.Process(target=smile_detection, args=("Thread2",))
x.start()
y.start()
我得到像
这样的输出Thread1 1
Thread1 2
.
.
Thread1 9
Thread1 10
Thread2 1
Thread2 2
.
.
Thread2 9
Thread2 10
我想要的是
Thread1 1
Thread1 2
.
.
Thread1 9
Thread1 10
Thread2 11
Thread2 12
.
.
Thread2 19
Thread2 20
我需要做些什么来实现这个目标?
答案 0 :(得分:1)
与线程不同,由于新进程的分叉(或产生),多处理处理共享状态有点棘手。特别是在窗户。要拥有共享对象,请使用multiprocessing.Array或multiprocessing.Value。在数组的情况下,您可以在每个进程中取消引用其他结构中的内存地址,例如numpy数组。在你的情况下,我会做这样的事情:
import multiprocessing, ctypes
count = multiprocessing.Value(ctypes.c_int, 0) # (type, init value)
def smile_detection(thread_name, count):
for x in range(10):
count.value +=1
print thread_name,count
return count
x = multiprocessing.Process(target=smile_detection, args=("Thread1", count))
y = multiprocessing.Process(target=smile_detection, args=("Thread2", count))
x.start()
y.start()
答案 1 :(得分:1)
尝试这样做:
import multiprocessing
def smile_detection(thread_name, counter, lock):
for x in range(10):
with lock:
counter.value +=1
print thread_name, counter.value
count = multiprocessing.Value('i', 0)
lock = multiprocessing.Lock()
x = multiprocessing.Process(target=smile_detection, args=("Thread1", count, lock))
y = multiprocessing.Process(target=smile_detection, args=("Thread2", count, lock))
x.start()
y.start()
x.join()
y.join()
第一个问题是全局变量不在进程之间共享。您需要使用具有某种线程安全锁定或同步类型的机制。我们可以使用multiprocessing.Value('i', 0)
来创建线程安全的同步整数值。我们使用multiprocessing.Lock()
来确保一次只有一个线程可以更新计数器。
如果您真的想使用全局变量,可以使用multiprocessing.Manager()
,它可以保留在全局变量中:
import multiprocessing
count = multiprocessing.Manager().Value('i', 0)
lock = multiprocessing.Manager().Lock()
def smile_detection(thread_name):
global count, lock
for x in range(10):
with lock:
counter.value +=1
print thread_name, counter.value
x = multiprocessing.Process(target=smile_detection, args=("Thread1",))
y = multiprocessing.Process(target=smile_detection, args=("Thread2",))
x.start()
y.start()
x.join()
y.join()
但是,就个人而言,我更喜欢第一种方法,因为Manager()
过于复杂。
现在输出:
$ python test.py
Thread1 1
Thread1 2
Thread1 3
Thread1 4
Thread1 5
Thread1 6
Thread1 7
Thread1 8
Thread1 9
...
Thread2 15
Thread2 16
Thread2 17
Thread2 18
Thread2 19
Thread2 20
答案 2 :(得分:1)
您可以使用multiprocessing.Value
:
返回从共享内存分配的ctypes对象。默认情况下,返回值实际上是对象的同步包装器。
代码如下:
import multiprocessing
count = multiprocessing.Value('i', 0)
def smile_detection(thread_name, count):
for x in range(10):
count += 1
print thread_name, count
x = multiprocessing.Process(target=smile_detection, args=("Thread1",count))
y = multiprocessing.Process(target=smile_detection, args=("Thread2",count))
x.start()
y.start()
x.join()
y.join()
请注意,输出可能不是您期望的输出。事实上,在您的预期输出中,Thread 1
的所有迭代都在Thread 2
的迭代之前。在多线程应用程序中并非如此。如果您希望这种情况发生,那么您不希望它被线程化!
答案 3 :(得分:0)
要在mutiprocessing.Manager
管理共享数据所需的流程之间共享数据:
count = multiprocessing.Manager().Value('i', 0) # creating shared variable
lock = multiprocessing.Manager().Lock() # we'll use lock to acquire lock on `count` before count += 1
def smile_detection(thread_name):
global count
for x in range(10):
lock.acquire()
count +=1
lock.release()
print thread_name,count
return count