性能改进 - 使用Get方法循环

时间:2016-07-12 01:20:11

标签: python django performance rest

我已经建立了一个程序来填补数据库,并且当时它正在运行。基本上,程序向应用程序发出请求,我使用(通过REST API)返回我想要的数据,然后操作数据库的可接受形式。

问题是:GET方法使得算法太慢,因为我正在访问特定条目的细节,因此对于每个条目,我必须发出1个请求。我有近15000个要求要做的事情,银行中的每一行都需要1秒钟。

有没有办法让这个请求更快?如何提高此方法的性能?顺便说一句,任何衡量代码性能的技巧?

提前致谢!!

这里是代码:

# Retrieving all the IDs I want to get the detailed info
abc_ids = serializers.serialize('json', modelExample.objects.all(), fields=('id'))
abc_ids = json.loads(abc_ids)
abc_ids_size = len(abc_ids)

# Had to declare this guys right here because in the end of the code I use them in the functions to create and uptade the back
# And python was complaining that I stated before assign. Picked random values for them.
age = 0
time_to_won = 0
data = '2016-01-01 00:00:00'

# First Loop -> Request to the detailed info of ABC
for x in range(0, abc_ids_size):

id = abc_ids[x]['fields']['id']
url = requests.get(
    'https://api.example.com/v3/abc/' + str(
        id) + '?api_token=123123123')

info = info.json()
dealx = dict(info)

# Second Loop -> Picking the info I want to uptade and create in the bank
for key, result in dealx['data'].items():
    # Relevant only for ModelExample -> UPTADE
    if key == 'age':
        result = dict(result)
        age = result['total_seconds']
    # Relevant only For ModelExample -> UPTADE
    elif key == 'average_time_to_won':
        result = dict(result)
        time_to_won = result['total_seconds']

    # Relevant For Model_Example2 -> CREATE
    # Storing a date here to use up foward in a datetime manipulation
    if key == 'add_time':
        data = str(result)

    elif key == 'time_stage':

        # Each stage has a total of seconds that the user stayed in.
        y = result['times_in_stages']
        # The user can be in any stage he want, there's no rule about the order.
        # But there's a record of the order he chose.
        z = result['order_of_stages']

        # Creating a list to fill up with all stages info and use in the bulk_create.
        data_set = []
        index = 0

        # Setting the number of repititions base on the number of the stages in the list.
        for elemento in range(0, len(z)):
            data_set_i = {}
            # The index is to define the order of the stages.
            index = index + 1

            for key_1, result_1 in y.items():
                if int(key_1) == z[elemento]:
                    data_set_i['stage_id'] = int(z[elemento])
                    data_set_i['index'] = int(index)
                    data_set_i['abc_id'] = id

                    # Datetime manipulation
                    if result_1 == 0 and index == 1:
                        data_set_i['add_date'] = data

                    # I know that I totally repeated the code here, I was trying to get this part shorter
                    # But I could not get it right.
                    elif result_1 > 0 and index == 1:
                        data_t = datetime.strptime(data, "%Y-%m-%d %H:%M:%S")
                        data_sum = data_t + timedelta(seconds=result_1)
                        data_sum += timedelta(seconds=3)
                        data_nova = str(data_sum.year) + '-' + str(formaters.DateNine(
                            data_sum.month)) + '-' + str(formaters.DateNine(data_sum.day)) + ' ' + str(
                            data_sum.hour) + ':' + str(formaters.DateNine(data_sum.minute)) + ':' + str(
                            formaters.DateNine(data_sum.second))
                        data_set_i['add_date'] = str(data_nova)

                    else:
                        data_t = datetime.strptime(data_set[elemento - 1]['add_date'], "%Y-%m-%d %H:%M:%S")
                        data_sum = data_t + timedelta(seconds=result_1)
                        data_sum += timedelta(seconds=3)
                        data_nova = str(data_sum.year) + '-' + str(formaters.DateNine(
                            data_sum.month)) + '-' + str(formaters.DateNine(data_sum.day)) + ' ' + str(
                            data_sum.hour) + ':' + str(formaters.DateNine(data_sum.minute)) + ':' + str(
                            formaters.DateNine(data_sum.second))
                        data_set_i['add_date'] = str(data_nova)

                    data_set.append(data_set_i)

Model_Example2_List = [Model_Example2(**vals) for vals in data_set]
Model_Example2.objects.bulk_create(Model_Example2_List)

ModelExample.objects.filter(abc_id=id).update(age=age, time_to_won=time_to_won)

1 个答案:

答案 0 :(得分:1)

如果瓶颈在您的网络请求中,除了可能使用gzip或deflate但使用requests之外,您无能为力。

  

gzip和deflate传输编码会自动解码   你。

如果您想要倍加肯定,可以将以下标题添加到获取请求中。

{ 'Accept-Encoding': 'gzip,deflate'}

另一种选择是使用线程并且有许多请求以并行方式运行,如果你有很多带宽和多个内核,这是一个很好的选择。

最后,有很多不同的方法来配置python,包括cprofile + kcachegrind组合。