找到矩阵

时间:2016-07-10 08:40:20

标签: string algorithm matrix dynamic-programming

问题:

给定一个只有1和0的布尔矩阵。找出连续1s的最长序列的长度。只允许移动是南,东南和东。

样本矩阵:输出5

10000
01111
00100
00010

我正在努力解决这个问题,但在理解问题时无法想到可能的解决方案。需要帮助解剖和理解问题。

更新

请分享正确性。

for i=1 to n+1
     N[i][m+1] = 0;
for j=1 to m+1
     N[n+1][j] = 0;
for i=n to 1
     for j=m to 1
          if M[i][j] == 1
                N[i][j] = 1 + max(N[i+1][j] , N[i][j+1]);
          else
                N[i][j] = 0
search max element in matrix, output it.
}

目前已尝试

int main()
{
    int A[5][5] = {{0,0,0,1,1},{1,1,1,0,1},{0,1,1,1,0},{0,0,1,0,0},{1,1,1,1,1}};
    int temp[5][5];
    int end_r(0), end_c(0);
    for(int i=0; i<;5; i++){
        for(int j=0; j<;5; j++){
            temp[i][j] = A[i][j];
            int top(0), left(0), max(0); 
            if(i>;0) top = temp[i-1][j];
            if(j>;0) left = temp[i][j-1];
            if(top>left) max = top; else max=left;
            if(temp[i][j] && max) {temp[i][j] = ++max, end_r=i; end_c=j;}
            cout<<temp[i][j]<<" ";

        }
        cout<<endl;
    }
    int i = end_r, j = end_c, count=temp[i][j];
    --count;
    while(count){    
    if((temp[i-1][j]) == count) --i; else --j;
    --count;
}

    cout<<"Starting Point"<<" "<<i<<" "<<j<<endl;
    cout<<"Ending Point"<<" "<<end_r<<" "<<end_c<<endl;
    cout<<"Max Length"<<" "<<temp[end_r][end_c];
    return 0;
}

解决方案

/*
============================================================================
Author         : James Chen
Email          : a.james.chen@gmail.com
Description    : Find the longest path of 1s available in the matrix 
Created Date   : 11-July-2013
Last Modified  :
============================================================================
*/

#include <iostream>
#include <iomanip>
#include <cassert>
#include <vector>

using namespace std;

void DisplayPath(int* matrix, int rows, int cols, int maxCount)
{
    typedef pair<int, int> Pair;
    vector<Pair> path;
    int prevRow = rows;
    int prevCol = cols;
    for(int i = rows - 1; i >= 0; --i){
        for(int j = cols - 1; j >=0; --j){
            if(matrix[ i * cols + j] == maxCount && i <= prevRow && j <= prevCol){
                path.push_back(make_pair(i, j));
                maxCount --;
                prevRow = i;
                prevCol = j;                         
            }

            if(maxCount == 0){
                cout << "The path is " << endl;
                for(int i = path.size() - 1; i >= 0; i--){
                    cout << path.size() - i << "th -- ";
                    cout << "[ " << path[i].first << ", " << path[i].second;
                    cout << "] " << endl;
                }

                return;
            }
        }
    }
}

int FindLongest1Sequences(int* matrix, int rows, int cols)
{
    assert(matrix != NULL);
    assert(rows > 0);
    assert(cols > 0);

    int maxCount(0);
    int count(0);

    for(int i = 0; i < rows; i ++){
        for(int j = 0; j < cols; j++){
            int a = (i == 0) ? 0 : matrix[(i - 1) * cols + j];
            int b = (j == 0) ? 0 : matrix[i * cols + j - 1];
            matrix[i * cols + j] = matrix[i * cols + j] ? max(a, b) + 1 : 0;
            maxCount = max(maxCount, matrix[i * cols + j]);
        }
    }

    DisplayPath(matrix, rows, cols, maxCount);

    return maxCount;
}

void DoTest(int* matrix, int rows, int cols)
{
    if(matrix == NULL){
        cout << "The matix is null" << endl;
        return;
    }

    if(rows < 1){
        cout << "The rows of matix is less than 1" << endl;
        return;
    }

    if(cols < 1){
        cout << "The cols of matix is less than 1" << endl;
        return;
    }

    cout << "The matrix is " << endl;
    for(int i = 0; i < rows; ++i){
        for(int j = 0; j < cols; ++j){
            cout << setw(3) << matrix[i * cols + j];
        }
        cout << endl;
    }

    int len = FindLongest1Sequences(matrix, rows, cols);
    cout << "The longest length is " << len << endl;
    cout << "---------------------------------------" << endl;

}



int main(int argc, char* argv[])
{
    int matrix[5][5] = {
        {0, 0, 0, 1, 1}, 
        {1, 1, 1, 0, 1}, 
        {0, 1, 1, 1, 0}, 
        {0, 0, 1, 0, 0}, 
        {1, 1, 1, 1, 1}
    };

    DoTest(&matrix[0][0], 5, 5);        // Expected return 8

    int matrix1[1][1] = {
        0
    };
    DoTest(&matrix1[0][0], 1, 1);       // Expected return 0

    int matrix2[1][1] = {
        1
    };
    DoTest(&matrix2[0][0], 1, 1);       // Expected return 1

    int matrix3[5][5] = {
        0
    };

    DoTest(&matrix3[0][0], 5, 5);       // Expected return 0

    int matrix4[5][5] = {
        {1, 1, 1, 1, 1}, 
        {1, 1, 1, 1, 1}, 
        {1, 1, 1, 1, 1}, 
        {1, 1, 1, 1, 1}, 
        {1, 1, 1, 1, 1}
    };

    DoTest(&matrix4[0][0], 5, 5);       // Expected return 9

    int matrix5[5][5] = {
        {1, 1, 0, 1, 1}, 
        {0, 1, 1, 0, 1}, 
        {1, 0, 0, 0, 0}, 
        {1, 1, 0, 1, 1}, 
        {1, 1, 1, 1, 1}
    };

    DoTest(&matrix5[0][0], 5, 5);       // Expected return 7

    return 0;
}

输出

The matrix is
  0  0  0  1  1
  1  1  1  0  1
  0  1  1  1  0
  0  0  1  0  0
  1  1  1  1  1
The path is
1th -- [ 1, 0]
2th -- [ 1, 1]
3th -- [ 2, 1]
4th -- [ 2, 2]
5th -- [ 3, 2]
6th -- [ 4, 2]
7th -- [ 4, 3]
8th -- [ 4, 4]
The longest length is 8
---------------------------------------
The matrix is
  0
The longest length is 0
---------------------------------------
The matrix is
  1
The path is
1th -- [ 0, 0]
The longest length is 1
---------------------------------------
The matrix is
  0  0  0  0  0
  0  0  0  0  0
  0  0  0  0  0
  0  0  0  0  0
  0  0  0  0  0
The longest length is 0
---------------------------------------
The matrix is
  1  1  1  1  1
  1  1  1  1  1
  1  1  1  1  1
  1  1  1  1  1
  1  1  1  1  1
The path is
1th -- [ 0, 0]
2th -- [ 1, 0]
3th -- [ 2, 0]
4th -- [ 3, 0]
5th -- [ 4, 0]
6th -- [ 4, 1]
7th -- [ 4, 2]
8th -- [ 4, 3]
9th -- [ 4, 4]
The longest length is 9
---------------------------------------
The matrix is
  1  1  0  1  1
  0  1  1  0  1
  1  0  0  0  0
  1  1  0  1  1
  1  1  1  1  1
The path is
1th -- [ 2, 0]
2th -- [ 3, 0]
3th -- [ 4, 0]
4th -- [ 4, 1]
5th -- [ 4, 2]
6th -- [ 4, 3]
7th -- [ 4, 4]
The longest length is 7
---------------------------------------
Press any key to continue . . .

参考https://en.wikipedia.org/wiki/Longest_increasing_subsequence https://sites.google.com/site/spaceofjameschen/annnocements/findthelongestpathof1savailableinthematrix--goldmansachs

1 个答案:

答案 0 :(得分:0)

这是一个动态编程问题。想象一下,你已经解决了问题,直到第i行和第j列。并且对于每一行&lt; i,第i行的每列小于j,你的答案都存储在DP [] []。

现在,您应该将其视为归纳。 DP [i] [j]的最佳答案可以来自这三个地方(如果它们存在 - 意味着它们是有效的指数并且M [i] [j] == 1):

DP[i - 1][j] (a south move from there to i, j)
DP[i - 1][j - 1] (a south east move from there)
DP[i][j - 1] (an east move from there)

您放置的代码(第一个代码)正在尝试模拟这个但实际上没有为此测试用例提供正确的解决方案(因为它无法捕获东南移动):

100
010
001

事实上,你的第一个代码必须是这样的:

N[i][j] = 1 + max(N[i+1][j] , N[i][j+1], N[i + 1][j + 1]);

注意,N [i] [j]就像我描述的DP [i] [j]。然而,我描述了问题的方式,即向南,东南,东移动。但是N [] []正在以相反的方式解决问题,即它从右下角开始向西,向西,向北移动。但是,它实际上并不重要;他们都会提供相同的解决方案。 (看看为什么这是一个很好的练习)