我是CPLEX的新手,我正在编写一个CPLEX不想满足的非常简单的模型。我知道我的模型是"详细"因为我的变量简单地等于其他变量,但这是我迈向更复杂模型的第一步,所以我想这样做。我不明白为什么会让CPLEX感到不安。
我的模特是:
Minimize
obj: v1
Subject To
l1: i_AB1 + i_AC1 - i_AB2 - i_AC3 = 1
l2: - i_AB1 + I_BB = 0
l3: I_CA + I_CC = 0
e5: i_AB2 + i_BD2 - I_BB = 0
e8: - i_AC1 - I_CA = 0
e9: i_AC3 + i_CD3 - I_CC = 0
\Indicator constraints
\For each connection XY
c1: bAB = 1-> i_AB1 - 1 v1 = 0
c2: bAB = 1-> i_AB2 - 1 v2 = 0
c5: bAC = 1-> i_AC1 - 1 v1 = 0
c6: bAC = 1-> i_AC3 - 1 v3 = 0
c9: bBD = 1-> i_BD2 - 1 v2 = 0
c13: bCD = 1-> i_CD3 - 1 v3 = 0
c15: bAB = 1
c16: bAC = 1
c17: bBD = 1
c18: bCD = 1
Bounds
0 <= v1 <= 1000
-1000 <= v2 <= 1000
-1000 <= v3 <= 1000
General
Binaries
bAB bAC bBD bCD
End
这显然没有解决方案(确实如此,或者至少是我的意图,但CPLEX说没有!)。
然后我将等式e8
替换为l3
,我得到了我想要的解决方案!
这是代码:
Minimize
obj: v1
Subject To
\budget:
l1: i_AB1 + i_AC1 - i_AB2 - i_AC3 = 1
l2: - i_AB1 + I_BB = 0
l3: - i_AC1 + I_CC = 0
e5: i_AB2 + i_BD2 - I_BB = 0
\Row C
\e8: - i_AC1 - I_CA = 0
e9: i_AC3 + i_CD3 - I_CC = 0
\Indicator constraints
\For each connection XY
c1: bAB = 1-> i_AB1 - 1 v1 = 0
c2: bAB = 1-> i_AB2 - 1 v2 = 0
c5: bAC = 1-> i_AC1 - 1 v1 = 0
c6: bAC = 1-> i_AC3 - 1 v3 = 0
c9: bBD = 1-> i_BD2 - 1 v2 = 0
c13: bCD = 1-> i_CD3 - 1 v3 = 0
c15: bAB = 1
c16: bAC = 1
c17: bBD = 1
c18: bCD = 1
Bounds
0 <= v1 <= 1000
-1000 <= v2 <= 1000
-1000 <= v3 <= 1000
General
Binaries
bAB bAC bBD bCD
End
对我而言,两者都是完全相同的模型。我做错了什么,以便第一个模型没有解决方案,即使它看起来相当于第二个确实有解决方案?
顺便说一句,解决方案是:
Populate: phase I
Tried aggregator 2 times.
MIP Presolve eliminated 4 rows and 4 columns.
Aggregator did 11 substitutions.
All rows and columns eliminated.
Presolve time = 0.00 sec.
Populate: phase II
Solution status: 129.
Objective value of the incumbent: 1
Incumbent: Column v1: Value = 1
Incumbent: Column i_AB1: Value = 1
Incumbent: Column i_AC1: Value = 1
Incumbent: Column i_AB2: Value = 0.5
Incumbent: Column i_AC3: Value = 0.5
Incumbent: Column I_BB: Value = 1
Incumbent: Column I_CC: Value = 1
Incumbent: Column i_BD2: Value = 0.5
Incumbent: Column i_CD3: Value = 0.5
Incumbent: Column bAB: Value = 1
Incumbent: Column v2: Value = 0.5
Incumbent: Column bAC: Value = 1
Incumbent: Column v3: Value = 0.5
Incumbent: Column bBD: Value = 1
Incumbent: Column bCD: Value = 1
The solution pool contains 1 solutions.
0 solutions were removed due to the solution pool relative gap parameter.
In total, 1 solutions were generated.
The average objective value of the solutions is 1.
Solution Objective Number of variables
value that differ compared to
the incumbent
p1 1 0 / 15
问题本身甚至不是MIP(因为我在这个初始版本中修复了我的布尔值,但它将是一个合适的MIP)。这会改变什么吗? 我真的不知道这是什么问题。
谢谢
答案 0 :(得分:1)
我认为问题是由于默认情况下I_CA
的下限为0.在documentation for the LP format的Bounds部分中,它说
也可以单独输入上限和下限...默认下限为0(零),默认上限+∞保持有效,直到明确更改边界。
如果将I_CA free
添加到第一个LP文件的bounds部分,则可行。