当使用Neo4j非托管扩展时,可以在遍历图形时将结果传输到客户端(在Scala中):
import javax.ws.rs.core.{MediaType, Response, StreamingOutput}
val stream: StreamingOutput = ???
Response.ok().entity(stream).`type`(MediaType.APPLICATION_JSON).build()
使用Neo4j 3使用定义的存储过程时,我找不到类似的可能性。他们返回Java 8 Stream
但我无法看到如何在这些流已被消耗的情况下向这些流添加元素。
有可能吗?
答案 0 :(得分:2)
我在其中一个APOC procedures中有一个例子。
我想在将来添加更多/更一般的例子。
答案 1 :(得分:1)
以下是我根据Michael Hunger代码(在Scala中)提出的内容。
<强> QueueBasedSpliterator 强>:
import java.util.Spliterator
import java.util.concurrent.{BlockingQueue, TimeUnit}
import java.util.function.Consumer
import org.neo4j.kernel.api.KernelTransaction
private class QueueBasedSpliterator[T](queue: BlockingQueue[T],
tombstone: T,
tx: KernelTransaction) extends Spliterator[T] {
override def tryAdvance(action: Consumer[_ >: T]): Boolean =
try {
if (tx.shouldBeTerminated()) false
else {
val entry = queue.poll(100, TimeUnit.MILLISECONDS)
if (entry == null || entry == tombstone) false
else {
action.accept(entry)
true
}
}
} catch {
case e: InterruptedException => false
}
override def trySplit(): Spliterator[T] = null
override def estimateSize(): Long = Long.MaxValue
override def characteristics(): Int = Spliterator.ORDERED | Spliterator.NONNULL
}
注意100毫秒的超时值。可能需要调整。
ResultsStream (阻止队列的包装):
import java.util.concurrent.BlockingQueue
class ResultsStream[T](tombstone: T, queue: BlockingQueue[T]) extends AutoCloseable {
def put(t: T): Unit = {
queue.put(t)
}
override def close(): Unit = {
put(tombstone)
}
}
CommonUtil 辅助方法:
import java.util.concurrent.ArrayBlockingQueue
import java.util.stream.{Stream, StreamSupport}
import org.neo4j.kernel.api.KernelTransaction
import org.neo4j.kernel.internal.GraphDatabaseAPI
import scala.concurrent.{ExecutionContext, Future}
object CommonUtil {
def inTx(db: GraphDatabaseAPI)(f: => Unit): Unit =
Managed(db.beginTx()) { tx => f; tx.success() }
def inTxFuture(db: GraphDatabaseAPI)(f: => Unit)(implicit ec: ExecutionContext): Future[Unit] =
Future(inTx(db)(f))
def streamResults[T](tombstone: T, tx: KernelTransaction)
(f: ResultsStream[T] => Any): Stream[T] = {
val queue = new ArrayBlockingQueue[T](100)
f(new ResultsStream(tombstone, queue))
StreamSupport.stream(new QueueBasedSpliterator[T](queue, tombstone, tx), false)
}
}
更多帮手:
object Managed {
type AutoCloseableView[T] = T => AutoCloseable
def apply[T : AutoCloseableView, V](resource: T)(op: T => V): V =
try {
op(resource)
} finally {
resource.close()
}
}
<强>池强>:
import java.util.concurrent.{ArrayBlockingQueue, ThreadPoolExecutor, TimeUnit}
import scala.concurrent.{ExecutionContext, ExecutionContextExecutor}
object Pool {
lazy val DefaultExecutionContent: ExecutionContextExecutor =
ExecutionContext.fromExecutor(createDefaultExecutor())
// values might be tuned in production
def createDefaultExecutor(corePoolSize: Int = Runtime.getRuntime.availableProcessors() * 2,
keepAliveSeconds: Int = 30) = {
val queueSize = corePoolSize * 25
new ThreadPoolExecutor(
corePoolSize / 2,
corePoolSize,
keepAliveSeconds.toLong,
TimeUnit.SECONDS,
new ArrayBlockingQueue[Runnable](queueSize),
new ThreadPoolExecutor.CallerRunsPolicy()
)
}
}
程序中的用法:
@Procedure("example.readStream")
def readStream(@Name("nodeId") nodeId: NodeId): Stream[StreamingItem] =
CommonUtil.streamResults(StreamingItem.Tombstone, kernelTx) { results =>
CommonUtil.inTxFuture(db) { // uses Pool.DefaultExecutionContent
Managed(results) { _ =>
graphUtil.findTreeNode(nodeId).foreach { node =>
// add elements to the stream here
results.put(???)
}
}
}
}
StreamingItem.Tombstone
只是一个静态StreamingItem
实例,具有关闭流的特殊含义。 db
和kernelTx
只是Neo4j设置的上下文变量:
@Context
public GraphDatabaseAPI db;
@Context
public KernelTransaction kernelTx;