我有一个我正在使用的大型数据框,其中包含股票的基础数据。下面是数据帧(数据)的头部和尾部的图像。它包含每个证券的数据,每年从2005年到2015年。请注意“日历”'柱。
我的目标是去每一排,享受' revenueusd'数据点并将其除以" revenueusd'前一年的数据点,以获得每个证券的1年收入增长变化。使用股票代码和日历定位第二个数据点。
我一直在尝试使用带有lambda的apply函数,但它不起作用。以下是我一直在尝试的代码:
def conversion(tick, dates,dataframe):
date1 = datetime.datetime.strptime(dates, "%Y-%m-%d").date()
date2 = datetime.date(date1.year-1,date1.month,date1.day).strftime("%Y-%m-%d")
growth = dataframe[(dataframe['ticker']==tick)&(dataframe['calendardate']==dates)]['revenueusd']/dataframe[(dataframe['ticker']==tick)&(dataframe['calendardate']==date2)]['revenueusd']-1
return growth
data['1yrRevenueGrowth']=data.apply(lambda x: conversion(x['ticker'],x['calendardate'],data),axis=1)
我已经坚持了几天,无情地搜索论坛。任何帮助将不胜感激!
,ticker,ticker.1,calendardate,revenueusd,gp,rnd
0,A,A,2015-12-31,4038000000,2041000000,330000000
1,AA,AA,2015-12-31,22534000000,4465000000,238000000
2,AAL,AAL,2015-12-31,40990000000,23911000000,0
3,AAP,AAP,2015-12-31,9737018000,4422772000,0
4,AAPL,AAPL,2015-12-31,234988000000,94308000000,8576000000
5,ABBV,ABBV,2015-12-31,22859000000,18359000000,4435000000
509,A,A,2014-12-31,6981000000,3593000000,719000000
510,AA,AA,2014-12-31,23906000000,4769000000,218000000
511,AAPL,AAPL,2014-12-31,199800000000,78432000000,6606000000
512,ABBV,ABBV,2014-12-31,19960000000,15534000000,3649000000
答案 0 :(得分:1)
为您的目的,有一个名为Series.pct_change的好功能。你可以这样做:
import pandas as pd
data = pd.read_csv("data.csv", index_col=0)
data.groupby("ticker").apply(lambda x : x.set_index("calendardate").sort_index()["revenueusd"].pct_change())
对于每个股票代码值,构造一个按日历日期排序的系列,然后应用函数pct_change
(默认情况下,此函数计算两个连续条目之间的比率)。
ticker calendardate
A 2014-12-31 NaN
2015-12-31 -0.421573
AA 2014-12-31 NaN
2015-12-31 -0.057391
AAL 2015-12-31 NaN
AAP 2015-12-31 NaN
AAPL 2014-12-31 NaN
2015-12-31 0.176116
ABBV 2014-12-31 NaN
2015-12-31 0.145240
Name: revenueusd, dtype: float64
还有一件事,您的日期格式很好,因此您可以轻松地将列转换为类型日期时间,如下所示:
data["calendardate"] = pd.to_datetime(data["calendardate"], infer_datetime_format=True)
答案 1 :(得分:0)
从这开始:
ticker ticker.1 calendardate revenueusd gp rnd
0 A A 2015-12-31 4038000000 2041000000 330000000
1 AA AA 2015-12-31 22534000000 4465000000 238000000
2 A A 2014-12-31 403800000 204100000 330000000
3 AA AA 2014-12-31 2253400000 446500000 238000000
4 A A 2013-12-31 403800000 20410000 330000000
5 AA AA 2013-12-31 225340000 44650000 238000000
6 A A 2012-12-31 403800 2041000 330000000
7 AA AA 2012-12-31 22534000 4465000 238000000
df["pct"] = df.groupby("ticker")['revenueusd'].pct_change()
ticker ticker.1 calendardate revenueusd gp rnd pct
0 A A 2015-12-31 4038000000 2041000000 330000000 NaN
1 AA AA 2015-12-31 22534000000 4465000000 238000000 NaN
2 A A 2014-12-31 403800000 204100000 330000000 -0.900
3 AA AA 2014-12-31 2253400000 446500000 238000000 -0.900
4 A A 2013-12-31 403800000 20410000 330000000 0.000
5 AA AA 2013-12-31 225340000 44650000 238000000 -0.900
6 A A 2012-12-31 403800 2041000 330000000 -0.999
7 AA AA 2012-12-31 22534000 4465000 238000000 -0.900
您可能需要在应用groupby之前对DataFrame进行排序。