我有14个数据框,每个数据框有14列,超过250,000行。 数据框具有相同的列标题,我想按行合并数据帧。我试图将数据帧连接到“成长”状态。 DataFrame,它花了几个小时。
基本上,我做了13次以下的事情:
DF = pd.DataFrame()
for i in range(13):
DF = pd.concat([DF, subDF])
stackoverflow answer here建议将所有子数据帧附加到列表中,然后连接子数据帧列表。
这听起来像是在做这样的事情:
DF = pd.DataFrame()
lst = [subDF, subDF, subDF....subDF] #up to 13 times
for subDF in lst:
DF = pd.concat([DF, subDF])
Aren他们是一回事吗?也许我误解了建议的工作流程。这就是我测试的内容。
import numpy
import pandas as pd
import timeit
def test1():
"make all subDF and then concatenate them"
numpy.random.seed(1)
subDF = pd.DataFrame(numpy.random.rand(1))
lst = [subDF, subDF, subDF]
DF = pd.DataFrame()
for subDF in lst:
DF = pd.concat([DF, subDF], axis=0,ignore_index=True)
def test2():
"add each subDF to the collecitng DF as you're making the subDF"
numpy.random.seed(1)
DF = pd.DataFrame()
for i in range(3):
subDF = pd.DataFrame(numpy.random.rand(1))
DF = pd.concat([DF, subDF], axis=0,ignore_index=True)
print('test1() takes {0} sec'.format(timeit.timeit(test1, number=1000)))
print('test2() takes {0} sec'.format(timeit.timeit(test2, number=1000)))
>> Output
test1() takes 12.732409087137057 sec
test2() takes 15.097430311612698 sec
感谢您就有效连接多个大型数据帧的有效方法提出建议。谢谢!
答案 0 :(得分:6)
创建包含所有数据框的列表:
dfs = []
for i in range(13):
df = ... # However it is that you create your dataframes
dfs.append(df)
然后一举将它们连接起来:
merged = pd.concat(dfs) # add ignore_index=True if appropriate
这比你的代码快得多,因为它创建了14个数据帧(原来的13个加merged
),而你的代码创建了26个(原来的13个加13个中间合并)。
编辑:
以下是您的测试代码的变体。
import numpy
import pandas as pd
import timeit
def test_gen_time():
"""Create three large dataframes, but don't concatenate them"""
for i in range(3):
df = pd.DataFrame(numpy.random.rand(10**6))
def test_sequential_concat():
"""Create three large dataframes, concatenate them one by one"""
DF = pd.DataFrame()
for i in range(3):
df = pd.DataFrame(numpy.random.rand(10**6))
DF = pd.concat([DF, df], ignore_index=True)
def test_batch_concat():
"""Create three large dataframes, concatenate them at the end"""
dfs = []
for i in range(3):
df = pd.DataFrame(numpy.random.rand(10**6))
dfs.append(df)
DF = pd.concat(dfs, ignore_index=True)
print('test_gen_time() takes {0} sec'
.format(timeit.timeit(test_gen_time, number=200)))
print('test_sequential_concat() takes {0} sec'
.format(timeit.timeit(test_sequential_concat, number=200)))
print('test_batch_concat() takes {0} sec'
.format(timeit.timeit(test_batch_concat, number=200)))
输出:
test_gen_time() takes 10.095820872998956 sec
test_sequential_concat() takes 17.144756617000894 sec
test_batch_concat() takes 12.99131180600125 sec
狮子的份额对应于生成数据帧。批量连接大约需要2.9秒;顺序连接需要7秒以上。