给定矩阵m
如下(1-5的行方式排列):
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 5 2 4 3
# [2,] 2 1 4 3 5
# [3,] 3 4 1 2 5
# [4,] 4 1 3 2 5
# [5,] 4 3 1 2 5
# [6,] 1 4 2 3 5
# [7,] 4 3 2 5 1
# [8,] 4 1 3 5 2
# [9,] 1 2 3 4 5
# [10,] 4 3 2 1 5
我想知道每个元素1-5在每行的另一个元素之前的次数(即考虑所有可能的对)
例如,对于对(1,5),1
在5
之前,在所有行中为9。另一个例子,对于对(3,1),3
在1
之前,在所有行中是4倍。我希望所有行中所有可能的对都有相同的结果。也就是说,
# (1, 2), (1, 3), (1, 4), (1, 5)
# (2, 1), (2, 3), (2, 4), (2, 5)
# (3, 1), (3, 2), (3, 4), (3, 5)
# (4, 1), (4, 2), (4, 3), (4, 5)
# (5, 1), (5, 2), (5, 3), (5, 4)
m <- structure(c(1L, 2L, 3L, 4L, 4L, 1L, 4L, 4L, 1L, 4L, 5L, 1L, 4L,
1L, 3L, 4L, 3L, 1L, 2L, 3L, 2L, 4L, 1L, 3L, 1L, 2L, 2L, 3L, 3L,
2L, 4L, 3L, 2L, 2L, 2L, 3L, 5L, 5L, 4L, 1L, 3L, 5L, 5L, 5L, 5L,
5L, 1L, 2L, 5L, 5L), .Dim = c(10L, 5L))
如何在R中有效地做到这一点?
修改
你会如何为这个矩阵做同样的事情?
# [,1] [,2] [,3] [,4] [,5]
# [1,] 3 4 1 5 0
# [2,] 1 2 5 3 0
# [3,] 3 5 0 0 0
# [4,] 4 5 0 0 0
# [5,] 3 4 1 5 2
# [6,] 3 1 2 0 0
# [7,] 4 1 5 2 0
# [8,] 4 3 5 2 0
# [9,] 5 2 0 0 0
# [10,] 5 4 2 0 0
m <- structure(c(3, 1, 3, 4, 3, 3, 4, 4, 5, 5, 4, 2, 5, 5, 4, 1, 1,
3, 2, 4, 1, 5, 0, 0, 1, 2, 5, 5, 0, 2, 5, 3, 0, 0, 5, 0, 2, 2,
0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0), .Dim = c(10L, 5L))
答案 0 :(得分:6)
这是一个矢量化解决方案,没有apply
:
func <- function(a,b) sum((which(!t(m-b)) - which(!t(m-a)))>0)
#> func(1,5)
#[1] 9
#> func(5,1)
#[1] 1
要生成所有想要的组合,您只需执行以下操作:
N = combn(1:5, 2)
cbind(N, N[nrow(N):1,])
然后,您只需要一个循环来迭代列并应用该函数。
答案 1 :(得分:3)
首先,我们如何使用硬编码数字来实现它:
apply(m, 1, function(r) { which(r == 1) < which(r == 5) })
# [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
sum(apply(m, 1, function(r) { which(r == 1) < which(r == 5) }))
# [1] 9
要为1:5
的所有组合(相同的除外)自动执行此操作,此处包含所有对的data.frame:
df <- expand.grid(a = 1:5, b = 1:5)
df <- df[ df$a != df$b, ]
head(df)
# a b
# 2 2 1
# 3 3 1
# 4 4 1
# 5 5 1
# 6 1 2
# 8 3 2
现在我们只需要迭代每一行(我猜我们可以使用另一个apply
的矩阵):
df$seqs <- sapply(seq_len(nrow(df)), function(i) {
sum(apply(m, 1, function(r) which(r == df$a[i]) < which(r == df$b[i])))
})
head(df)
# a b seqs
# 2 2 1 3
# 3 3 1 4
# 4 4 1 6
# 5 5 1 1
# 6 1 2 7
# 8 3 2 6
或者,我认为现在是使用mapply
的好时机:
myfunc <- function(a, b, m) sum(apply(m, 1, function(r) which(r == a) < which(r == b)))
df$seqs <- mapply(myfunc, df$a, df$b, list(m))
head(df)
# a b seqs
# 2 2 1 3
# 3 3 1 4
# 4 4 1 6
# 5 5 1 1
# 6 1 2 7
# 8 3 2 6
当然,我使用了一个匿名的正式功能(也可以在上面做过),但这显示了这种方法的一些优雅。
修改:新约束,现在m
可能没有匹配项。上述操作失败,因为which
在没有匹配项时返回logical(0)
,导致sapply
返回异构列表。修复它的一种方法是使用快速辅助函数:
apply(m, 1, function(r) which(r == a) < which(r == b))
# [[1]]
# logical(0)
# [[2]]
# [1] FALSE
# ...
emptyF <- function(x) sapply(x, function(y) if (! length(y)) FALSE else y)
emptyF(apply(m, 1, function(r) which(r == a) < which(r == b)))
# [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
现在myfunc
变为:
myfunc <- function(a, b, m) sum(emptyF(apply(m, 1, function(r) which(r == a) < which(r == b))))
(注意:我更喜欢Colonel Beauvel's answer因为它的矢量化,因此可能更快。它也可以从这种和类似的补救措施中获益。))
答案 2 :(得分:1)
试试这个
library(plyr)
combns <- expand.grid(unique(as.vector(m)),unique(as.vector(m)))
combns <- combns[combns$Var1!=combns$Var2,]
combns <- combns[with(combns,order(Var1)),]
combns$count <- sapply(1:nrow(combns),function(u) sum(unlist(apply(apply(m,1,function(t) match(t,combns[u,])),2,function(s) na.exclude(count(unlist(sapply(seq(length(s)),function(t) diff(s,lag=t))))$freq[count(unlist(sapply(seq(length(s)),function(t) diff(s,lag=t))))$x==1]))),na.rm = T))
答案 3 :(得分:1)
知道(1)每一行没有重复,(2)每行的0都在末尾聚集,(3)nrow(m)
比ncol(m)
大2-3个数量级,我们可以遍历列,搜索特定数字的外观,减少到达0时的不必要的计算:
ff = function(x, a, b)
{
ia = rep_len(NA_integer_, nrow(x)) # positions of 'a' in each row
ib = rep_len(NA_integer_, nrow(x)) # -//- of 'b'
notfound0 = seq_len(nrow(x)) # rows that have not, yet, a 0
for(j in seq_len(ncol(x))) {
xj = x[notfound0, j]
if(!length(xj)) break
ia[notfound0[xj == a]] = j
ib[notfound0[xj == b]] = j
notfound0 = notfound0[xj != 0L] # check if any more rows have 0 now on
}
i = ia < ib ## is 'a' before 'b'?
## return both a - b and b - a; no need to repeat computations
data.frame(a = c(a, b),
b = c(b, a),
n = c(sum(i, na.rm = TRUE), sum(!i, na.rm = TRUE)))
}
编辑m
:
ff(m, 3, 2)
# a b n
#1 3 2 3
#2 2 3 1
ff(m, 5, 1)
# a b n
#1 5 1 0
#2 1 5 4
对于所有对:
xtabs(n ~ a + b,
do.call(rbind,
combn(5, 2, function(x) ff(m, x[1], x[2]),
simplify = FALSE)))
# b
#a 1 2 3 4 5
# 1 0 4 1 0 4
# 2 0 0 1 0 1
# 3 3 3 0 2 4
# 4 3 4 1 0 5
# 5 0 5 1 1 0
而且,它似乎也可以在更大的范围内容忍:
set.seed(007)
MAT = do.call(rbind, combinat::permn(8))[sample(1e4), ]
MAT[sample(length(MAT), length(MAT)*0.4)] = 0L #40% 0s
MAT = t(apply(MAT, 1, function(x) c(x[x != 0L], rep_len(0L, sum(x == 0L)))))
dim(MAT)
#[1] 10000 8
## including colonel's answer for a quick comparison
colonel = function(x, a, b)
{
i = (which(!t(x - b)) - which(!t(x - a))) > 0L
data.frame(a = c(a, b), b = c(b, a), n = c(sum(i), sum(!i)))
}
microbenchmark::microbenchmark(ff(MAT, 7, 2), colonel(MAT, 7, 2))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# ff(MAT, 7, 2) 3.795003 3.908802 4.500453 3.972138 4.096377 45.926679 100 b
# colonel(MAT, 7, 2) 2.156941 2.231587 2.423053 2.295794 2.404894 3.775516 100 a
#There were 50 or more warnings (use warnings() to see the first 50)
因此,只需将方法简单地转换为循环就证明是足够有效的。更多的0也应该进一步减少计算时间。