矩阵中的列和行的名称与组有关,这些组与其他组具有不同的关系。我想创建一个矩阵,其中的值基于行名和列名以及相应的关系。
我已经创建了一种效率低下的方法,这对于一个小的3 * 3矩阵是可以的,但对大型矩阵来说是不实用的。
我的示例数据如下:
tom <- data.frame("w"=c(7,1,2),"x"=c(2,4,4),"y"=c(12,4,8))
row.names(tom) <- colnames(tom)
same <- data.frame("trait"=c("w","x","y"),
"group"=c(1,2,2),
"own_group_relationship"=c(0.86,0.55,0.55))
diff <- data.frame("trait"=c("w","x","y"),
"diff_group_relationship"=c(0.23,0.23,0.23))
我的陈述是这样的:
a1 <- if ( row.names(tom[c(1),]) == colnames(tom[c(1)]) ) {
merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]
} else {
merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]
}
目前这适用于一个元素。我不得不多次重复此代码8次,更改相应的行名称以获得9个值(a1到a9)。
a2 <- if ( row.names(tom[c(1),]) == colnames(tom[c(2)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a3 <- if ( row.names(tom[c(1),]) == colnames(tom[c(3)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a4 <- if ( row.names(tom[c(2),]) == colnames(tom[c(1)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a5 <- if ( row.names(tom[c(2),]) == colnames(tom[c(2)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a6 <- if ( row.names(tom[c(2),]) == colnames(tom[c(3)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a7 <- if ( row.names(tom[c(3),]) == colnames(tom[c(1)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a8 <- if ( row.names(tom[c(3),]) == colnames(tom[c(2)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
a9 <- if ( row.names(tom[c(3),]) == colnames(tom[c(3)]) ) {merge(data.frame("trait" = row.names(tom[c(1),])),same)[1,3]} else {merge(data.frame("trait" = row.names(tom[c(1),])),diff)[1,2]}
这9个值很容易转换为3 * 3矩阵,但必须有更优雅的解决方案。
vec <- c(a1,a2,a3,a4,a5,a6,a7,a8,a9)
mtrx <- matrix(vec, nrow=3, ncol=3)
mtrx # the resulting matrix of group inter group relationships
[,1] [,2] [,3]
[1,] 0.86 0.23 0.23
[2,] 0.23 0.86 0.23
[3,] 0.23 0.23 0.86
答案 0 :(得分:0)
以下是使用outer
和match
的解决方案:
outer(rownames(tom), colnames(tom),
FUN=function(x, y) {
(x==y) * same$own_group_relationship[match(x, same$trait)] +
(x!=y) * diff$diff_group_relationship[match(x, diff$trait)]
})
返回
[,1] [,2] [,3]
[1,] 0.86 0.23 0.23
[2,] 0.23 0.55 0.23
[3,] 0.23 0.23 0.55
内部函数会生成一个向量,该向量将根据行名称和列名称是否匹配来提取正确的值。 outer
函数返回正确的位置和尺寸。