R循环缺失值需要TRUE / FALSE

时间:2016-07-05 03:30:04

标签: r loops na

我在R中有这个代码:

j <- 1
k <- nrow(group_IDs)

  while (j <= k)
        {   
            d_clust <- Mclust(Customers_Attibutes_s[which    (Customers_Attibutes_s$Group_ID == group_IDs$Group_ID[j]),3:7], G=2:7)
            temp <- cbind(Customers_Attibutes[which        (Customers_Attibutes$Group_ID == group_IDs$Group_ID[j]),], as.data.frame    (predict.Mclust(d_clust, Customers_Attibutes[which(Customers_Attibutes$Group_ID     == group_IDs$Group_ID[j]), 3:7]))[1])
            temp_ <- rbind(temp,temp_)
            j <- j+1
        }
while语句中的

j <= k返回此错误:

  

缺少需要TRUE / FALSE的值。

group_IDs不为null,在这种情况下它实际上包含值8。 它似乎进入循环并在第二轮崩溃。

2 个答案:

答案 0 :(得分:0)

由于SELECT Posts.post_title AS Title, ImgURL.guid AS Imgguid, Posts.guid, Posts.post_content FROM `wp_posts` AS Posts INNER JOIN `wp_postmeta` AS Meta ON Posts.ID = Meta.post_id INNER JOIN `wp_postmeta` AS Featured ON Posts.ID = Featured.post_id INNER JOIN `wp_postmeta` AS StartF ON Posts.ID = StartF.post_id INNER JOIN `wp_postmeta` AS EndF ON Posts.ID = EndF.post_id INNER JOIN `wp_postmeta` AS ImgID ON Posts.ID = ImgID.post_id INNER JOIN `wp_posts` AS ImgURL ON ImgID.meta_value = ImgURL.ID WHERE (Featured.meta_key = '_ecp_custom_22' AND Featured.meta_value = 'yes') AND (StartF.meta_key = '_ecp_custom_23' AND CAST(StartF.meta_value AS DATETIME) <= CURDATE()) AND (EndF.meta_key = '_ecp_custom_27' AND CAST(EndF.meta_value AS DATETIME) >= CURDATE()) AND (ImgURL.post_type = 'attachment') AND (Posts.ID IN (SELECT relationships.object_id FROM `wp_terms` AS terms INNER JOIN `wp_term_taxonomy` AS taxonomy ON terms.term_id = taxonomy.term_id INNER JOIN `wp_term_relationships` AS relationships ON taxonomy.term_taxonomy_id = relationships.term_taxonomy_id WHERE terms.name = 'Sydney')) GROUP BY Title LIMIT 300 是向量,请尝试group_ IDs而不是length(group_IDs)。矢量没有行,因此等价物为nrow

这是我怀疑发生的事情:

length

答案 1 :(得分:0)

您可以使用for解决索引问题,例如:

for (ID in group_IDs) {}

当然,这假设group_ID是值的向量。

注意:您的代码在循环group_IDs$Group_ID[j]中显示以下内容,这意味着除了向量之外的其他内容;也许你的意思是group_IDs[j]