我是python和nltk的新手。我已将代码从https://gist.github.com/alexbowe/879414转换为下面给出的代码,以使其运行许多文档/文本块。但是我收到了以下错误
Traceback (most recent call last):
File "E:/NLP/PythonProgrames/NPExtractor/AdvanceMain.py", line 16, in <module>
result = np_extractor.extract()
File "E:\NLP\PythonProgrames\NPExtractor\NPExtractorAdvanced.py", line 67, in extract
for term in terms:
File "E:\NLP\PythonProgrames\NPExtractor\NPExtractorAdvanced.py", line 60, in get_terms
for leaf in self.leaves(tree):
TypeError: leaves() takes 1 positional argument but 2 were given
任何人都可以帮我解决这个问题。我必须从数百万的产品评论中提取名词短语。我使用Java使用Standford NLP工具包,但它非常慢,所以我认为在python中使用nltk会更好。如果有更好的解决方案,请同时推荐。
import nltk
from nltk.corpus import stopwords
stopwords = stopwords.words('english')
grammar = r"""
NBAR:
{<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns
NP:
{<NBAR>}
{<NBAR><IN><NBAR>} # Above, connected with in/of/etc...
"""
lemmatizer = nltk.WordNetLemmatizer()
stemmer = nltk.stem.porter.PorterStemmer()
class NounPhraseExtractor(object):
def __init__(self, sentence):
self.sentence = sentence
def execute(self):
# Taken from Su Nam Kim Paper...
chunker = nltk.RegexpParser(grammar)
#toks = nltk.regexp_tokenize(text, sentence_re)
# #postoks = nltk.tag.pos_tag(toks)
toks = nltk.word_tokenize(self.sentence)
postoks = nltk.tag.pos_tag(toks)
tree = chunker.parse(postoks)
return tree
def leaves(tree):
"""Finds NP (nounphrase) leaf nodes of a chunk tree."""
for subtree in tree.subtrees(filter=lambda t: t.label() == 'NP'):
yield subtree.leaves()
def normalise(word):
"""Normalises words to lowercase and stems and lemmatizes it."""
word = word.lower()
word = stemmer.stem_word(word)
word = lemmatizer.lemmatize(word)
return word
def acceptable_word(word):
"""Checks conditions for acceptable word: length, stopword."""
accepted = bool(2 <= len(word) <= 40
and word.lower() not in stopwords)
return accepted
def get_terms(self,tree):
for leaf in self.leaves(tree):
term = [self.normalise(w) for w, t in leaf if self.acceptable_word(w)]
yield term
def extract(self):
terms = self.get_terms(self.execute())
matches = []
for term in terms:
for word in term:
matches.append(word)
return matches
答案 0 :(得分:4)
您需要:
normalize
,acceptable_word
和leaves
中的每一个
self
参数作为这些方法的第一个参数。您正在调用self.leaves
,它会将self
作为隐式第一个参数传递给leaves
方法(但您的方法只需要一个参数)。制作这些静态方法或添加self
参数将解决此问题。
(您稍后拨打self.acceptable_word
,self.normalize
也会遇到同样的问题)
您可以在docs中了解Python的静态方法,或者可能更容易理解的external site 中的静态方法。