我正在尝试做一些可能不可能或可能以不同方式完成的事情......
我必须读取1 GB的Access文件并在pandas中操作它;由于cursor.fetchall()
直接与Memory Error
失败,我尝试使用下面的函数来查看内存错误发生的时间:它出现在400.000行之后(总数为1.12 Mrows)。
很奇怪,因为我的机器里有8 GB的ram,它似乎是免费的50%。我还将虚拟内存设置为16 GB,但结果没有改变。
我不需要微积分速度,所以任何肮脏的解决方案都是受欢迎的:)包括使用硬盘作为ram(我有一个ssd)。
有一种方法可以让所有内存都可用于python吗?
已经失败的方法:
cursor.fetchone()
cursor.fetchmany()
cursor.fetchall()
read_sql
传递chunksize
:pandas.read_sql(query, conn, chunksize=chunksize)
(thx为用户MaxU)功能:
def msaccess_to_df (abs_path, query):
conn = pypyodbc.connect(
r"Driver={Microsoft Access Driver (*.mdb, *.accdb)};"
r"Dbq=" + abs_path + ";" )
cur = conn.cursor()
cur.execute( query )
fields = zip(*cur.description)[0]
df = pandas.DataFrame(columns=fields)
fetch_lines_per_block = 5000
i = 0
while True:
rows = cur.fetchmany(fetch_lines_per_block) # <-----
if len(rows) == 0: break
else:
rd = [dict(zip(fields, r)) for r in rows]
df = df.append(rd, ignore_index=True)
del rows
del rd
i+=1
print 'fetched', i*fetch_lines_per_block, 'lines'
cur.close()
conn.close()
return df
错误:
df = df.append(rd, ignore_index=True)
File "C:\Python27\lib\site-packages\pandas\core\frame.py", line 4338, in append
verify_integrity=verify_integrity)
File "C:\Python27\lib\site-packages\pandas\tools\merge.py", line 845, in concat
copy=copy)
File "C:\Python27\lib\site-packages\pandas\tools\merge.py", line 904, in __init__
obj.consolidate(inplace=True)
File "C:\Python27\lib\site-packages\pandas\core\generic.py", line 2747, in consolidate
self._consolidate_inplace()
File "C:\Python27\lib\site-packages\pandas\core\generic.py", line 2729, in _consolidate_inplace
self._protect_consolidate(f)
File "C:\Python27\lib\site-packages\pandas\core\generic.py", line 2718, in _protect_consolidate
result = f()
File "C:\Python27\lib\site-packages\pandas\core\generic.py", line 2727, in f
self._data = self._data.consolidate()
File "C:\Python27\lib\site-packages\pandas\core\internals.py", line 3273, in consolidate
bm._consolidate_inplace()
File "C:\Python27\lib\site-packages\pandas\core\internals.py", line 3278, in _consolidate_inplace
self.blocks = tuple(_consolidate(self.blocks))
File "C:\Python27\lib\site-packages\pandas\core\internals.py", line 4269, in _consolidate
_can_consolidate=_can_consolidate)
File "C:\Python27\lib\site-packages\pandas\core\internals.py", line 4292, in _merge_blocks
new_values = new_values[argsort]
MemoryError
####################编辑 - 已解决##################### /强>
最后我用
解决了这样任何方法都可以。
答案 0 :(得分:1)
我会使用原生pandas方法 - read_sql()而不是在循环中手动获取行:
def msaccess_to_df (abs_path, query):
conn = pypyodbc.connect(
r"Driver={Microsoft Access Driver (*.mdb, *.accdb)};"
r"Dbq=" + abs_path + ";" )
df = pd.read_sql(query, conn)
conn.close()
return df
如果您仍然收到MemoryError
例外,请尝试以块的形式读取您的数据:
def msaccess_to_df (abs_path, query, chunksize=10**5):
conn = pypyodbc.connect(
r"Driver={Microsoft Access Driver (*.mdb, *.accdb)};"
r"Dbq=" + abs_path + ";" )
df = pd.concat([x for x in pd.read_sql(query, conn, chunksize=chunksize)],
ignore_index=True)
conn.close()
return df
PS这应该给你一个想法,但请注意我没有测试这段代码,所以它可能需要一些调试......