我的数据可以很容易地转换为类似于:
的pandas数据框import pandas as pd
data={'a':["t", "g"]*9,'b' [1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6],'distance':[10, 15, 290, 300, 315, 320, 350, 360, 10, 25, 225, 240, 325, 335, 365, 205, 15, 35]}
df=pd.DataFrame(data,columns=['a','b','distance'])
print df
a b distance
0 t 1 10
1 g 2 15
2 t 3 290
3 g 4 300
4 t 5 315
5 g 6 320
6 t 1 350
7 g 2 360
8 t 3 10
9 g 4 25
10 t 5 225
11 g 6 240
12 t 1 325
13 g 2 335
14 t 3 365
15 g 4 205
16 t 5 15
17 g 6 35
我想要删除" b"中所有具有相同值的行。列,但保持一行中"距离"中的最小值。柱。在这种情况下,我想删除所有具有"距离"大于200,因此,在此示例中,仅保留索引为0,1,8,9,16,17的行。最后所有的行应该有不同的" b"价值和最小的距离"。它看起来像是:
a b distance
0 t 1 10
1 g 2 15
2 t 3 10
3 g 4 25
4 t 5 15
5 g 6 35
我怎么能这样做?
答案 0 :(得分:2)
groupby
col上 b
并在idxmin
列上致电distance
以对orig df进行索引:
In [114]:
df.loc[df.groupby('b')['distance'].idxmin()]
Out[114]:
a b distance
0 t 1 10
1 g 2 15
8 t 3 10
9 g 4 25
16 t 5 15
17 g 6 35
在这里你可以看到idxmin
返回最低值的索引:
In [115]:
df.groupby('b')['distance'].idxmin()
Out[115]:
b
1 0
2 1
3 8
4 9
5 16
6 17
Name: distance, dtype: int64
答案 1 :(得分:0)
试试这个:
df.groupby('b')['a','b','distance'].min()
# a b distance
# b
# 1 t 1 10
# 2 g 2 15
# 3 t 3 10
# 4 g 4 25
# 5 t 5 15
# 6 g 6 35