我尝试使用Caffe c ++ classification示例(这里是code)用手写数字对图像进行分类(我在MNIST数据库上训练我的模型),但它总是返回概率喜欢
[0, 0, 0, 1.000, 0, 0, 0, 0, 0] (1.000 can be on different position)
即使图像上没有数字。我认为它应该像
[0.01, 0.043, ... 0.9834, ... ]
另外,例如对于' 9',它始终预测错误的数字。
我在classification.cpp中改变的唯一一件事就是我总是使用CPU
//#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU); // <----- always CPU
//#else
// Caffe::set_mode(Caffe::GPU);
//#endif
这就是我的deploy.prototxt的样子
name: "LeNet"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
image_data_param {
source: "D:\\caffe-windows\\examples\\mnist\\test\\file_list.txt"
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "Softmax"
bottom: "ip2"
top: "loss"
}
file_list.txt是
D:\caffe-windows\examples\mnist\test\test1.jpg 0
而tests1.jpg就是这样的
(黑色和白色28 * 28图像保存在绘画中,我尝试过不同的尺寸,但这并不重要,Preprocces()无论如何调整大小)
那么为什么它会以100%的概率预测错误的数字呢?
(我使用的是Windows 7,VS13)
答案 0 :(得分:1)
在你的&#34; ImageData&#34;图层,你应该将你的test1.jpg数据从[0,255]标准化为[0,1] by&#34; scale&#34;在训练和测试之间保持预处理方式的一致性,如下所示:
image_data_param {
source: "D:\\caffe-windows\\examples\\mnist\\test\\file_list.txt"
scale: 0.00390625
}