为什么matplotlib推断/绘制缺失值?

时间:2016-07-04 06:58:04

标签: python matplotlib plot

我有时会遇到一系列数据。我是实时绘制传感器的值,这些值可以通过用户交互打开和关闭,因此我不能确定值总是在一系列中。用户可以启动传感器,然后再将其关闭再打开,但在这种情况下,matplotlib会从最后一个终点和新起点绘制一条线。

我绘制的数据如下:

[[  5.          22.57011604]
 [  6.          22.57408142]
 [  7.          22.56350136]
 [  8.          22.56394005]
 [  9.          22.56790352]
 [ 10.          22.56451225]
 [ 11.          22.56481743]
 [ 12.          22.55789757]
  #Missing x vals. Still plots straight line..
 [ 29.          22.55654716]
 [ 29.          22.56066513]
 [ 30.          22.56110382]
 [ 31.          22.55050468]
 [ 32.          22.56550789]
 [ 33.          22.56213379]
 [ 34.          22.5588932 ]
 [ 35.          22.54829407]
 [ 35.          22.56697655]
 [ 36.          22.56005478]
 [ 37.          22.5568161 ]
 [ 38.          22.54621696]
 [ 39.          22.55033493]
 [ 40.          22.55079269]
 [ 41.          22.55475616]
 [ 41.          22.54783821]
 [ 42.          22.55195618]]

我的情节功能看起来很简单:

def plot(self, data)
    for name, xy_dict in data.iteritems():
        x_vals = xy_dict['x_values']
        y_vals = xy_dict['y_values']
        line_to_plot = xy_dict['line_number']
        self.lines[line_to_plot].set_xdata(x_vals)
        self.lines[line_to_plot].set_ydata(y_vals)

有谁知道为什么会那样?在绘图时我是否必须处理非连续的x和y值?似乎matplotlib应该自己解决这个问题。否则我必须将列表拆分成较小的列表并绘制这些列表?

3 个答案:

答案 0 :(得分:2)

一个选项是在缺少数据的地方添加虚拟项目(在您的情况下显然当x变化超过1时),并将它们设置为屏蔽元素。这样matplotlib会跳过线段。例如:

import numpy as np
import matplotlib.pylab as pl

# Your data, with some additional elements deleted...
data = np.array(
[[  5., 22.57011604],
 [  6., 22.57408142],
 [  9., 22.56790352],
 [ 10., 22.56451225],
 [ 11., 22.56481743],
 [ 12., 22.55789757],
 [ 29., 22.55654716],
 [ 33., 22.56213379],
 [ 34., 22.5588932 ],
 [ 35., 22.54829407],
 [ 40., 22.55079269],
 [ 41., 22.55475616],
 [ 41., 22.54783821],
 [ 42., 22.55195618]])

x = data[:,0]
y = data[:,1]

# Difference from element to element in x
dx = x[1:]-x[:-1]

# Wherever dx > 1, insert a dummy item equal to -1
x2 = np.insert(x, np.where(dx>1)[0]+1, -1)
y2 = np.insert(y, np.where(dx>1)[0]+1, -1)

# As discussed in the comments, another option is to use e.g.:
#x2 = np.insert(x, np.where(dx>1)[0]+1, np.nan)
#y2 = np.insert(y, np.where(dx>1)[0]+1, np.nan)
# and skip the masking step below.

# Mask elements which are -1
x2 = np.ma.masked_where(x2 == -1, x2)
y2 = np.ma.masked_where(y2 == -1, y2)

pl.figure()
pl.subplot(121)
pl.plot(x,y)
pl.subplot(122)
pl.plot(x2,y2)

enter image description here

答案 1 :(得分:2)

另一种选择是将Nonenumpy.nan作为y的值。

例如,这显示了一条断开的行:

import matplotlib.pyplot as plt
plt.plot([1,2,3,4,5],[5,6,None,7,8])

答案 2 :(得分:0)

Matplotlib会将所有相关的数据点与行连接起来。

如果您想避免这种情况,可以将数据拆分为缺失的x值,并分别绘制两个拆分列表。