在嵌套的logit模型中,您可以在树的每个级别定义回归量。在我在手册和其他示例中阅读的所有示例中,回归量仅针对最后一级进行定义。我将使用一个常见的例子,捕鱼模式。
巢:
Shore = { Beach, Pier} , Boat = { Charter, Private}
假设我有回归量Price
,CatchRate
和Income
。如何使用Price
和CatchRate
解释最后一级,Income
解释第一级。
在R中,我可以这样做:
mlogit(choice~price+catch,nests=list(shore=c("pier","beach"),boat=c("charter","private")))
但我不知道在哪里粘贴变量income
。
答案 0 :(得分:0)
您正在使用的示例和问题的答案都在文档中:
## model with charter as the reference level
m <- mlogit(mode ~ price+ catch | income, data = Fish, reflevel = "charter")
## same model with a subset of alternatives : charter, pier, beach
m <- mlogit(mode ~ price+ catch | income, data = Fish,
alt.subset = c("charter", "pier", "beach"))
## a pure "multinomial model"
summary(mlogit(mode ~ 0 | income, data = Fish))
## which can also be estimated using multinom (package nnet)
library("nnet")
summary(multinom(mode ~ income, data = Fishing))
## a "mixed" model
m <- mlogit(mode ~ price+ catch | income, data = Fish)
summary(m)