纱线模式上的火花以“退出状态:-100。诊断:在* lost *节点上释放容器”结束

时间:2016-07-02 00:39:40

标签: apache-spark yarn emr

我正在尝试使用最新的EMR在AWS上加载具有1TB数据的数据库。并且运行时间太长以至于在6小时内没有完成,但是在运行6h30m之后,我得到一些错误,宣布Container在丢失的节点上发布然后作业失败。日志是这样的:

16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144178.0 in stage 0.0 (TID 144178, ip-10-0-2-176.ec2.internal): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000006 on host: ip-10-0-2-176.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144181.0 in stage 0.0 (TID 144181, ip-10-0-2-176.ec2.internal): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000006 on host: ip-10-0-2-176.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144175.0 in stage 0.0 (TID 144175, ip-10-0-2-176.ec2.internal): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000006 on host: ip-10-0-2-176.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144213.0 in stage 0.0 (TID 144213, ip-10-0-2-176.ec2.internal): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000006 on host: ip-10-0-2-176.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO scheduler.DAGScheduler: Executor lost: 5 (epoch 0)
16/07/01 22:45:43 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO storage.BlockManagerMasterEndpoint: Trying to remove executor 5 from BlockManagerMaster.
16/07/01 22:45:43 INFO storage.BlockManagerMasterEndpoint: Removing block manager BlockManagerId(5, ip-10-0-2-176.ec2.internal, 43922)
16/07/01 22:45:43 INFO storage.BlockManagerMaster: Removed 5 successfully in removeExecutor
16/07/01 22:45:43 ERROR cluster.YarnClusterScheduler: Lost executor 6 on ip-10-0-2-173.ec2.internal: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO spark.ExecutorAllocationManager: Existing executor 5 has been removed (new total is 41)
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144138.0 in stage 0.0 (TID 144138, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 6 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144185.0 in stage 0.0 (TID 144185, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 6 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144184.0 in stage 0.0 (TID 144184, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 6 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144186.0 in stage 0.0 (TID 144186, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 6 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000007 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO scheduler.DAGScheduler: Executor lost: 6 (epoch 0)
16/07/01 22:45:43 INFO storage.BlockManagerMasterEndpoint: Trying to remove executor 6 from BlockManagerMaster.
16/07/01 22:45:43 INFO storage.BlockManagerMasterEndpoint: Removing block manager BlockManagerId(6, ip-10-0-2-173.ec2.internal, 43593)
16/07/01 22:45:43 INFO storage.BlockManagerMaster: Removed 6 successfully in removeExecutor
16/07/01 22:45:43 ERROR cluster.YarnClusterScheduler: Lost executor 30 on ip-10-0-2-173.ec2.internal: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144162.0 in stage 0.0 (TID 144162, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 30 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO spark.ExecutorAllocationManager: Existing executor 6 has been removed (new total is 40)
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144156.0 in stage 0.0 (TID 144156, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 30 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144170.0 in stage 0.0 (TID 144170, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 30 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 WARN scheduler.TaskSetManager: Lost task 144169.0 in stage 0.0 (TID 144169, ip-10-0-2-173.ec2.internal): ExecutorLostFailure (executor 30 exited caused by one of the running tasks) Reason: Container marked as failed: container_1467389397754_0001_01_000035 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node
16/07/01 22:45:43 INFO scheduler.DAGScheduler: Executor lost: 30 (epoch 0)
16/07/01 22:45:43 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_1467389397754_0001_01_000024 on host: ip-10-0-2-173.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node

我很确定我的网络设置有效,因为我试图在一个小得多的桌子上的同一环境中运行这个脚本。

此外,我知道有人在6个月前发布了一个问题,要求同样的问题:spark-job-error-yarnallocator-exit-status-100-diagnostics-container-released但我仍然要问,因为没有人回答这个问题。

5 个答案:

答案 0 :(得分:4)

看起来其他人也有同样的问题,所以我只是发一个答案而不是写评论。我不确定这会解决问题,但这应该是一个想法。

如果您使用现货实例,您应该知道如果价格高于您的输入,现货实例将被关闭,您将遇到此问题。即使您只是使用现场实例作为奴隶。所以我的解决方案是不使用任何现场实例进行长期运行。

另一个想法是将作业分成许多独立的步骤,因此您可以将每个步骤的结果保存为S3上的文件。如果发生任何错误,只需从缓存的文件开始。

答案 1 :(得分:2)

我遇到了同样的问题。我在 DZone 上的这篇文章中找到了一些线索:
https://dzone.com/articles/some-lessons-of-spark-and-memory-issues-on-emr

  

通过增加DataFrame分区的数量(在这种情况下,从1,024增加到2,048)解决了这一问题。这样减少了每个分区所需的内存。


所以我试图增加DataFrame分区的数量来解决我的问题。

答案 2 :(得分:1)

是动态分配内存吗?我有类似的问题,我通过计算执行程序内存,执行程序核心和执行程序进行静态分配来解决。 对于Spark中的巨大工作负载,请尝试静态分配。

答案 3 :(得分:0)

这意味着您的YARN容器已关闭,要调试发生的情况,您必须阅读YARN日志,使用官方的CLI yarn logs -applicationId或随意使用并为我的项目https://github.com/ebuildy/yoga贡献一个YARN查看器网络应用。

您应该看到很多Worker错误。

答案 4 :(得分:0)