我已经将自己写成了一个张量流类,如下所示,但是当我在函数refine_init_weight
中手动训练后尝试将一些权重设置为零时,我遇到了一些问题。在这个函数中,我尝试将所有数字设置为零,一旦它低于某个值,看看准确率如何变化。问题是,当我重新self.sess.run(self.accuracy, feed_dict={self.var_X: self.X_test, self.var_Y: self.y_test})
时,它的值似乎没有相应改变。我只是想知道在这种情况下我应该在哪里更改符号变量(精度取决于我改变的权重)?
import tensorflow as tf
from nncomponents import *
from helpers import *
from sda import StackedDenoisingAutoencoder
class DeepFeatureSelection:
def __init__(self, X_train, X_test, y_train, y_test, weight_init='sda', hidden_dims=[100, 100, 100], epochs=1000,
lambda1=0.001, lambda2=1.0, alpha1=0.001, alpha2=0.0, learning_rate=0.1, optimizer='FTRL'):
# Initiate the input layer
# Get the dimension of the input X
n_sample, n_feat = X_train.shape
n_classes = len(np.unique(y_train))
self.epochs = epochs
# Store up original value
self.X_train = X_train
self.y_train = one_hot(y_train)
self.X_test = X_test
self.y_test = one_hot(y_test)
# Two variables with undetermined length is created
self.var_X = tf.placeholder(dtype=tf.float32, shape=[None, n_feat], name='x')
self.var_Y = tf.placeholder(dtype=tf.float32, shape=[None, n_classes], name='y')
self.input_layer = One2OneInputLayer(self.var_X)
self.hidden_layers = []
layer_input = self.input_layer.output
# Initialize the network weights
weights, biases = init_layer_weight(hidden_dims, X_train, weight_init)
print(type(weights[0]))
# Create hidden layers
for init_w,init_b in zip(weights, biases):
self.hidden_layers.append(DenseLayer(layer_input, init_w, init_b))
layer_input = self.hidden_layers[-1].output
# Final classification layer, variable Y is passed
self.softmax_layer = SoftmaxLayer(self.hidden_layers[-1].output, n_classes, self.var_Y)
n_hidden = len(hidden_dims)
# regularization terms on coefficients of input layer
self.L1_input = tf.reduce_sum(tf.abs(self.input_layer.w))
self.L2_input = tf.nn.l2_loss(self.input_layer.w)
# regularization terms on weights of hidden layers
L1s = []
L2_sqrs = []
for i in xrange(n_hidden):
L1s.append(tf.reduce_sum(tf.abs(self.hidden_layers[i].w)))
L2_sqrs.append(tf.nn.l2_loss(self.hidden_layers[i].w))
L1s.append(tf.reduce_sum(tf.abs(self.softmax_layer.w)))
L2_sqrs.append(tf.nn.l2_loss(self.softmax_layer.w))
self.L1 = tf.add_n(L1s)
self.L2_sqr = tf.add_n(L2_sqrs)
# Cost with two regularization terms
self.cost = self.softmax_layer.cost \
+ lambda1*(1.0-lambda2)*0.5*self.L2_input + lambda1*lambda2*self.L1_input \
+ alpha1*(1.0-alpha2)*0.5 * self.L2_sqr + alpha1*alpha2*self.L1
# FTRL optimizer is used to produce more zeros
# self.optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate).minimize(self.cost)
self.optimizer = optimize(self.cost, learning_rate, optimizer)
self.accuracy = self.softmax_layer.accuracy
self.y = self.softmax_layer.y
def train(self, batch_size=100):
sess = tf.Session()
self.sess = sess
sess.run(tf.initialize_all_variables())
for i in xrange(self.epochs):
x_batch, y_batch = get_batch(self.X_train, self.y_train, batch_size)
sess.run(self.optimizer, feed_dict={self.var_X: x_batch, self.var_Y: y_batch})
if i % 2 == 0:
l = sess.run(self.cost, feed_dict={self.var_X: x_batch, self.var_Y: y_batch})
print('epoch {0}: global loss = {1}'.format(i, l))
self.selected_w = sess.run(self.input_layer.w)
print("Train accuracy:",sess.run(self.accuracy, feed_dict={self.var_X: self.X_train, self.var_Y: self.y_train}))
print("Test accuracy:",sess.run(self.accuracy, feed_dict={self.var_X: self.X_test, self.var_Y: self.y_test}))
print(self.selected_w)
print(len(self.selected_w[self.selected_w==0]))
print("Final test accuracy:",sess.run(self.accuracy, feed_dict={self.var_X: self.X_test, self.var_Y: self.y_test}))
def refine_init_weight(self, threshold=0.001):
refined_w = np.copy(self.selected_w)
refined_w[refined_w < threshold] = 0
self.input_layer.w.assign(refined_w)
print("Test accuracy refined:",self.sess.run(self.accuracy, feed_dict={self.var_X: self.X_test, self.var_Y: self.y_test}))
答案 0 :(得分:2)
(我只是将我的评论作为答案重新发布)
您需要运行您创建的分配操作,否则它只会添加到图形中并且从不执行。
assign_op = self.input_layer.w.assign(refined_w)
self.sess.run(assign_op)
如果您想在Tensorflow中执行此操作,可以使用tf.greater
和tf.less
创建权重变量的布尔掩码,将此掩码转换为tf.float32
并将其与权重数组相乘。