我正在将多行记录文本文件读入RDD。基础数据就像这样
Time MHist::852-YF-007
2016-05-10 00:00:00 0
2016-05-09 23:59:00 0
2016-05-09 23:58:00 0
Time MHist::852-YF-008
2016-05-10 00:00:00 0
2016-05-09 23:59:00 0
2016-05-09 23:58:00 0
不,我想转换RDD,以便获得密钥映射,(时间戳,值)。这可以通过几个步骤完成。但我想只在一个调用中提取该信息(但在Python 2.7中不是3)。
RDD是这样的:
[(0, u''),
(12,
u'852-YF-007\t\r\n2016-05-10 00:00:00\t0\r\n2016-05-09 23:59:00\t0\r\n2016-05-09 23:58:00\t0\r\n2016-05-09 23:57:00\t0\r\n2016-05-09 23:56:00\t0\r\n2016-05-09 23:55:00\t0\r\n2016-05-09 23:54:00\t0\r\n2016-05-09 23:53:00\t0\r\n2016-05-09 23:52:00\t0\r\n2016-05-09 23:51:00\t0\r\n2016-05-09 23:50:00\t0\r\n2016-05-09 23:49:00\t0\r\n2016-05-09 23:48:00\t0\r\n2016-05-09 23:47:00\t0\r\n2016-05-09 23:46:00\t0\r\n2016-05-09 23:45:00\t0\r\n2016-05-09 23:44:00\t0\r\n2016-05-09 23:43:00\t0\r\n2016-05-09 23:42:00\t0\n'),
(473,
u'852-YF-008\t\r\n2016-05-10 00:00:00\t0\r\n2016-05-09 23:59:00\t0\r\n2016-05-09 23:58:00\t0\r\n2016-05-09 23:57:00\t0\r\n2016-05-09 23:56:00\t0\r\n2016-05-09 23:55:00\t0\r\n2016-05-09 23:54:00\t0\r\n2016-05-09 23:53:00\t0\r\n2016-05-09 23:52:00\t0\r\n2016-05-09 23:51:00\t0\r\n2016-05-09 23:50:00\t0\r\n2016-05-09 23:49:00\t0\r\n2016-05-09 23:48:00\t0\r\n2016-05-09 23:47:00\t0\r\n2016-05-09 23:46:00\t0\r\n2016-05-09 23:45:00\t0\r\n2016-05-09 23:44:00\t0\r\n2016-05-09 23:43:00\t0\r\n2016-05-09 23:42:00\t0')]
对于每一对,有趣的部分是值(内容)。在该值内,第一项是键/名称,其余是具有时间戳的值。因此,我试图使用它:
sheet = sc.newAPIHadoopFile(
'sample.txt',
'org.apache.hadoop.mapreduce.lib.input.TextInputFormat',
'org.apache.hadoop.io.LongWritable',
'org.apache.hadoop.io.Text',
conf={'textinputformat.record.delimiter': 'Time\tMHist::'}
)
from operator import itemgetter
def process(pair):
_, content = pair
if not content:
pass
lines = content.splitlines();
#k = lines[0].strip()
#vs =lines[1:]
k, vs = itemgetter(0, slice(1, None), lines)
#k, *vs = [x.strip() for x in content.splitlines()] # Python 3 syntax
for v in vs:
try:
ds, x = v.split("\t")
yield k, (dateutil.parser.parse(ds), float(x)) # or int(x)
return
except ValueError:
pass
sheet.flatMap(process).take(5)
但是我收到了这个错误:
TypeError:' operator.itemgetter'对象不可迭代
进入函数的对具有char-position(我可以忽略)和内容。内容应按\ r \ n分割,并且行数组的第一项是键,而其他项则作为flatMap的key-timestamp-value。
那么,我在流程方法中做错了什么?
同时,由于Stackoverflow和其他所有人的帮助,我提出了这个解决方案。这个非常好用:
# reads a text file in TSV notation having the key-value no as first column but
# as a randomly occuring line followed by its values. Remark: a variable might occur in several files
#Time MHist::852-YF-007
#2016-05-10 00:00:00 0
#2016-05-09 23:59:00 0
#2016-05-09 23:58:00 0
#Time MHist::852-YF-008
#2016-05-10 00:00:00 0
#2016-05-09 23:59:00 0
#2016-05-09 23:58:00 0
#imports
from operator import itemgetter
from datetime import datetime
#read the text file with special record-delimiter --> all lines after Time\tMHist:: are the values for that variable
sheet = sc.newAPIHadoopFile(
'sample.txt',
'org.apache.hadoop.mapreduce.lib.input.TextInputFormat',
'org.apache.hadoop.io.LongWritable',
'org.apache.hadoop.io.Text',
conf={'textinputformat.record.delimiter': 'Time\tMHist::'}
)
#this avoid using multiple map/flatMap/mapValues/flatMapValues calls by extracting the values at once
def process_and_extract(pair):
# first part will be the char-position within the file, which we can ignore
# second is the real content as one string and not yet splitted
_, content = pair
if not content:
pass
try:
# once the content is split into lines:
# 1. the first line will have the bare variable name since we removed the preceeding
# part when opening the file (see delimiter above)
# 2. the second line until the end will include the values for the current variable
# Python 2.7 syntax
#clean = itemgetter(0, slice(1, None))(lines)
clean = [x.strip() for x in content.splitlines()]
k, vs = clean[0], clean[1:]
# Python 3 syntax
#k, *vs = [x.strip() for x in content.splitlines()]
#for v in vs*:
for v in vs:
try:
# split timestamp and value and convert (cast) them from string to correct data type
ds, x = v.split("\t")
yield k, (datetime.strptime(ds, "%Y-%m-%d %H:%M:%S"), float(x))
except ValueError:
# might occur if a line format is corrupt
pass
except IndexError:
# might occur if content is empty or iregular
pass
# read, flatten, extract and reduce the file at once
sheet.flatMap(process_and_extract) \
.reduceByKey(lambda x, y: x + y) \
.take(5)
第二个版本是避免for-each-loop,最后速度提高了20%:
start_time = time.time()
#read the text file with special record-delimiter --> all lines after Time\tMHist:: are the values for that variable
sheet = sc.newAPIHadoopFile(
'sample.txt',
'org.apache.hadoop.mapreduce.lib.input.TextInputFormat',
'org.apache.hadoop.io.LongWritable',
'org.apache.hadoop.io.Text',
conf={'textinputformat.record.delimiter': 'Time\tMHist::'}
)
def extract_blob(pair):
if not pair:
pass
try:
offset, content = pair
if not content:
pass
clean = [x.strip() for x in content.splitlines()]
if not clean or len(clean) < 2:
pass
k, vs = clean[0], clean[1:]
if not k:
pass
return k.strip(), vs
except IndexError:
# might occur if content is empty or malformed
pass
def extract_line(pair):
if not pair:
pass
key, line = pair;
if not key or not line:
pass
# split timestamp and value and convert (cast) them from string to correct data type
content = line.split("\t")
if not content or len(content) < 2:
pass
try:
ds, x = content
if not ds or not x:
pass
return (key, datetime.strptime(ds, "%Y-%m-%d %H:%M:%S"), float(x))
except ValueError:
# might occur if a line format is corrupt
pass
def check_empty(x):
return not (x == None)
#drop keys and filter out non-empty entries
non_empty = sheet.filter(lambda (k, v): v)
#group lines having variable name at first line
grouped_lines = non_empty.map(extract_blob)
#extract variable name and split it from the variable values
flat_lines = grouped_lines.flatMapValues(lambda x: x)
#extract the values from the value
flat_triples = flat_lines.map(extract_line).filter(check_empty)
#convert to dataframe
df = flat_triples.toDF(["Variable", "Time", "Value"])
df.write \
.partitionBy("Variable") \
.saveAsTable('Observations', format='parquet', mode='overwrite', path=output_hdfs_filepath)
print("loading and saving done in {} seconds".format(time.time() - start_time));
答案 0 :(得分:2)
itemgetter
返回一个接受对象的函数,并为传递给__getitem__
的每个参数调用itemgetter
。所以你必须在lines
上调用它:
itemgetter(0, slice(1, None))(lines)
大致相当于
[lines[i] for i in [0, slice(1, None)])
其中lines[slice(1, None)]
基本上是lines[1:]
。
这意味着您必须先确保lines
不为空,否则lines[0]
将失败。
if lines: # bool(empty_sequence) is False
k, vs = itemgetter(0, slice(1, None))(lines)
for v in vs:
...
将所有内容放在一起,包括doctests:
def process(pair):
r"""
>>> list(process((0, u'')))
[]
>>> kvs = list(process((
... 12,
... u'852-YF-007\t\r\n2016-05-10 00:00:00\t0\r\n2016-05-09 23:59:00\t0')))
>>> kvs[0]
(u'852-YF-007', (datetime.datetime(2016, 5, 10, 0, 0), 0.0))
>>> kvs[1]
(u'852-YF-007', (datetime.datetime(2016, 5, 9, 23, 59), 0.0))
>>> list(process((
... 10,
... u'852-YF-007\t\r\n2ad-05-10 00')))
[]
"""
_, content = pair
clean = [x.strip() for x in content.strip().splitlines()]
if clean:
k, vs = itemgetter(0, slice(1, None))(clean)
for v in vs:
try:
ds, x = v.split("\t")
yield k, (datetime.strptime(ds, "%Y-%m-%d %H:%M:%S"), float(x))
except ValueError:
pass