Spark:如何使用Struct数组列表解析多个json?

时间:2016-06-30 04:00:46

标签: json scala apache-spark apache-spark-sql

我试图获得文件中所有JSON对象的平均评级。我加载了文件并转换为数据框但在解析avg时遇到错误。 样品申请:

{
        "country": "France",
        "customerId": "France001",
        "visited": [
            {
                "placeName": "US",
                "rating": "2.3",
                "famousRest": "N/A",
                "placeId": "AVBS34"

            },
              {
                "placeName": "US",
                "rating": "3.3",
                "famousRest": "SeriousPie",
                "placeId": "VBSs34"

            },
              {
                "placeName": "Canada",
                "rating": "4.3",
                "famousRest": "TimHortons",
                "placeId": "AVBv4d"

            }        
    ]
}

所以对于这个JSON,美国平均评级为(2.3 + 3.3)/ 2 = 2.8

{
        "country": "Egypt",
        "customerId": "Egypt009",
        "visited": [
            {
                "placeName": "US",
                "rating": "1.3",
                "famousRest": "McDonald",
                "placeId": "Dedcf3"

            },
              {
                "placeName": "US",
                "rating": "3.3",
                "famousRest": "EagleNest",
                "placeId": "CDfet3"

            },


}

{
        "country": "Canada",
        "customerId": "Canada012",
        "visited": [
            {
                "placeName": "UK",
                "rating": "3.3",
                "famousRest": "N/A",
                "placeId": "XSdce2"

            },


    ]
}

对于我们这个平均值=(3.3 +1.3)/ 2 = 2.3

总而言之,平均评分为:(2.8 + 2.3)/ 2 = 2.55(只有两个请求在他们的访问列表中有' US')

我的架构:

root
|-- country: string(nullable=true)
|-- customerId:string(nullable=true)
|-- visited: array (nullable = true)
|    |-- element: struct (containsNull = true)
|    |   |-- placeId: string (nullable = true)
|    |   |-- placeName: string (nullable = true) 
|    |   |-- famousRest: string (nullable = true)
|    |   |-- rating: string (nullable = true)

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.jsonFile("temp.txt")
df.show() 

所以基本上我需要得到平均值,其中placeName =' US'比方说,例如。 AVG_RATING =每个JSON对象中的评级总和,其中placeName为US /此类访问条目的计数,FINAL_VALUE =每个JSON对象中所有AVG_RATING的总和,具有placeName' US'所有JSON对象的数量/ placeName =' US' 。

到目前为止,我试过了:

 df.registerTempTable("people")
   sqlContext.sql("select avg(expResults.rank) from people LATERAL VIEW explode(visited)people AS expResults where expResults.placeName = 'US' ").collect().foreach(println)

    val result = df.select("*").where(array_contains (df("visited.placeName"), "US"));  - gives the list where visited array contains US. But I am not sure how do parse through list of structs.

有人可以告诉我该怎么办?

2 个答案:

答案 0 :(得分:2)

看起来你想要这样的东西:

import org.apache.spark.sql.functions.{avg, explode}

val result = df
  .withColumn("visit", explode($"visited"))    // Explode visits
  .groupBy($"customerId", $"visit.placeName")  // Group by using dot syntax
  .agg(avg($"visit.rating".cast("double")).alias("tmp"))
  .groupBy($"placeName").agg(avg($"tmp").alias("value"))

之后,您可以针对您选择的国家/地区对此进行过滤。

result.where($"placeName" === "US").show
// +---------+-----+
// |placeName|value|
// +---------+-----+
// |       US| 2.55|
// +---------+-----+

不太优雅的方法是使用UDF:

import org.apache.spark.sql.Row
import org.apache.spark.sql.functions.udf

def userAverage(country: String) = udf((visits: Seq[Row]) => Try {
   val filtered = visits
     .filter(_.getAs[String]("placeName") == country)
     .map(_.getAs[String]("rating").toDouble)
   filtered.sum / filtered.size
}.toOption)

df.select(userAverage("US")($"visited").as("tmp")).na.drop.agg(avg("tmp"))

注意:这遵循问题中提供的解释,计算平均值的平均值,这与接受的答案不同。对于简单的平均值:

val result = df
  .select(explode($"visited").alias("visit"))
  .groupBy($"visit.placeName")
  .agg(avg($"visit.rating".cast("double")))

答案 1 :(得分:0)

按照我的解决方案解决您的问题。

val DF = sqlContext.jsonFile("sample.json")


DF.registerTempTable("temp")


sqlContext.sql("select place_and_rating.placeName as placeName, avg(place_and_rating.rating) as avg_rating from temp lateral view explode(visited) exploded_table as place_and_rating where place_and_rating.placeName='US' group by place_and_rating.placeName").show()