问题:在Matplotlib中绘制多个直方图时,我无法区分情节
图像问题:** **小问题:左侧标签' Count'部分不在图像之外。为什么?
描述
我想绘制3个不同组的直方图。每组都是一个包含0和1的数组。我想要每个的直方图,这样我就可以检测数据集上的不平衡。
我将它们分开绘制,但我想要它们的图形。
可以将不同的图形并排放置,或者我甚至用谷歌搜索将其绘制为3D,但我不知道如何轻松地阅读"阅读"或者"看"在图形上并理解它。
现在,我想在同一图形的每一侧绘制[train],[validation]和[test]条形图,如下所示:
PS:我的谷歌搜索没有返回任何可以理解的代码。 此外,我想如果有人会检查我是否在我的代码上做了疯狂。
非常感谢你们!
代码:
def generate_histogram_from_array_of_labels(Y=[], labels=[], xLabel="Class/Label", yLabel="Count", title="Histogram of Trainset"):
plt.figure()
plt.clf()
colors = ["b", "r", "m", "w", "k", "g", "c", "y"]
information = []
for index in xrange(0, len(Y)):
y = Y[index]
if index > len(colors):
color = colors[0]
else:
color = colors[index]
if labels is None:
label = "?"
else:
if index < len(labels):
label = labels[index]
else:
label = "?"
unique, counts = np.unique(y, return_counts=True)
unique_count = np.empty(shape=(unique.shape[0], 2), dtype=np.uint32)
for x in xrange(0, unique.shape[0]):
unique_count[x, 0] = unique[x]
unique_count[x, 1] = counts[x]
information.append(unique_count)
# the histogram of the data
n, bins, patches = plt.hist(y, unique.shape[0], normed=False, facecolor=color, alpha=0.75, range=[np.min(unique), np.max(unique) + 1], label=label)
xticks_pos = [0.5 * patch.get_width() + patch.get_xy()[0] for patch in patches]
plt.xticks(xticks_pos, unique)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
plt.title(title)
plt.grid(True)
plt.legend()
# plt.show()
string_of_graphic_image = cStringIO.StringIO()
plt.savefig(string_of_graphic_image, format='png')
string_of_graphic_image.seek(0)
return base64.b64encode(string_of_graphic_image.read()), information
修改
在哈希码的答案之后,这个新代码:
def generate_histogram_from_array_of_labels(Y=[], labels=[], xLabel="Class/Label", yLabel="Count", title="Histogram of Trainset"):
plt.figure()
plt.clf()
colors = ["b", "r", "m", "w", "k", "g", "c", "y"]
to_use_colors = []
information = []
for index in xrange(0, len(Y)):
y = Y[index]
if index > len(colors):
to_use_colors.append(colors[0])
else:
to_use_colors.append(colors[index])
unique, counts = np.unique(y, return_counts=True)
unique_count = np.empty(shape=(unique.shape[0], 2), dtype=np.uint32)
for x in xrange(0, unique.shape[0]):
unique_count[x, 0] = unique[x]
unique_count[x, 1] = counts[x]
information.append(unique_count)
unique, counts = np.unique(Y[0], return_counts=True)
histrange = [np.min(unique), np.max(unique) + 1]
# the histogram of the data
n, bins, patches = plt.hist(Y, 1000, normed=False, alpha=0.75, range=histrange, label=labels)
#xticks_pos = [0.5 * patch.get_width() + patch.get_xy()[0] for patch in patches]
#plt.xticks(xticks_pos, unique)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
plt.title(title)
plt.grid(True)
plt.legend()
产生这个:
- 新编辑:
def generate_histogram_from_array_of_labels(Y=[], labels=[], xLabel="Class/Label", yLabel="Count", title="Histogram of Trainset"):
plt.figure()
plt.clf()
information = []
for index in xrange(0, len(Y)):
y = Y[index]
unique, counts = np.unique(y, return_counts=True)
unique_count = np.empty(shape=(unique.shape[0], 2), dtype=np.uint32)
for x in xrange(0, unique.shape[0]):
unique_count[x, 0] = unique[x]
unique_count[x, 1] = counts[x]
information.append(unique_count)
n, bins, patches = plt.hist(Y, normed=False, alpha=0.75, label=labels)
plt.xticks((0.25, 0.75), (0, 1))
plt.xlabel(xLabel)
plt.ylabel(yLabel)
plt.title(title)
plt.grid(True)
plt.legend()
现在正在工作,但是,左侧的标签有点出界,我想更好地使酒吧居中......我怎么能这样做?
答案 0 :(得分:7)
我试过了,想出了这个。您可以在代码中更改xticks位置。你需要做的就是将一个元组传递给plt.hist
,不能更简单吧!所以假设你有两个0和1的列表,所以你要做的是 -
a = np.random.randint(2, size=1000)
b = np.random.randint(2, size=1000)
plt.hist((a, b), 2, label = ("data1", "data2"))
plt.legend()
plt.xticks((0.25, 0.75), (0, 1))
我试图运行的确切代码(在将箱数改为2之后) -
a = np.random.randint(2, size=1000)
b = np.random.randint(2, size=1000)
y = [a, b]
labels = ["data1", "data2"]
generate_histogram_from_array_of_labels(Y = y, labels = labels)
我得到了同样的结果......
答案 1 :(得分:1)
如果您的数据集长度相等,您可以使用pandas轻松完成此操作。所以假设你有
import numpy
N = 1000
train, validation, test = [numpy.random.randint(2, size=N) for _ in range(3)]
Y = [train, validation, test]
你可以简单地做
import pandas
df = pandas.DataFrame(list(zip(*Y)), columns=['Train', 'Validation', 'Test'])
df.apply(pandas.value_counts).plot.bar()
导致这个情节:
如果您还import seaborn
,它看起来会更好一些: