我有这个df:
l1 = ['a', 'b', 'c']
l2 = ['x', ['y1', 'y2', 'y3'], 'z']
df = pd.DataFrame(list(zip(l1, l2)), columns = ['l1', 'l2'])
结果:
l1 l2
0 a x
1 b [y1, y2, y3]
2 c z
我需要的是在l2中解压缩内部列表并在l1中传播相应的值,如下所示:
l1 l2
0 a x
1 b y1
2 b y2
3 b y3
4 c z
这样做的正确方法是什么? 感谢。
答案 0 :(得分:2)
您可以将嵌套列表理解与itertools.zip_longest一起使用。
import pandas as pd
from itertools import zip_longest
l1 = ['a', 'b', 'c']
l2 = ['x', ['y1', 'y2', 'y3'], 'z']
expanded = [(left, right) for outer in zip(l1, l2)
for left, right in zip_longest(*outer, fillvalue=outer[0])]
pd.DataFrame(expanded)
结果是......
0 1
0 a x
1 b y1
2 b y2
3 b y3
4 c z
对我来说,这是一个列表组合太长的边界。还假设l1
中没有列表,并且正在填写。
答案 1 :(得分:1)
蛮力,循环遍历数据框:
for idx in df.index:
# This transforms the item in "l2" into an iterable list
item = df.loc[idx, "l2"] if isinstance(df.loc[idx, "l2"], (list, tuple)) else [df.loc[idx, "l2"]]
for element in item:
print(df.loc[idx, "l1"], element)
返回
a x
b y1
b y2
b y3
c z
答案 2 :(得分:1)
我认为您可以numpy.repeat
使用str.len
来表示重复值,lists
可以使用嵌套chain
的平面值:
from itertools import chain
df1 = pd.DataFrame({
"l1": np.repeat(df.l1.values, df.l2.str.len()),
"l2": list(chain.from_iterable(df.l2))})
print (df1)
l1 l2
0 a x
1 b y1
2 b y2
3 b y3
4 c z
<强>计时强>:
#[100000 rows x 2 columns]
np.random.seed(10)
N = 100000
l1 = ['a', 'b', 'c']
l1 = np.random.choice(l1, N)
l2 = [list(tuple(string.ascii_letters[:np.random.randint(1, 10)])) for _ in np.arange(N)]
df = pd.DataFrame({"l1":l1, "l2":l2})
df.l2 = df.l2.apply(lambda x: x if len(x) !=1 else x[0])
#print (df)
In [91]: %timeit (pd.DataFrame([(left, right) for outer in zip(l1, l2) for left, right in zip_longest(*outer, fillvalue=outer[0])]))
1 loop, best of 3: 242 ms per loop
In [92]: %timeit (pd.DataFrame({ "l1": np.repeat(df.l1.values, df.l2.str.len()), "l2": list(chain.from_iterable(df.l2))}))
10 loops, best of 3: 84.6 ms per loop
<强>结论强>:
numpy.repeat
3 times
更快zip_longest
解决更大的df。
编辑:
为了与循环版本进行比较,需要更小的df,因为非常慢:
#[1000 rows x 2 columns]
np.random.seed(10)
N = 1000
l1 = ['a', 'b', 'c']
l1 = np.random.choice(l1, N)
l2 = [list(tuple(string.ascii_letters[:np.random.randint(1, 10)])) for _ in np.arange(N)]
df = pd.DataFrame({"l1":l1, "l2":l2})
df.l2 = df.l2.apply(lambda x: x if len(x) !=1 else x[0])
#print (df)
def alexey(df):
df2 = pd.DataFrame(columns=df.columns,index=df.index)[0:0]
for idx in df.index:
new_row = df.loc[idx, :].copy()
for res in df.ix[idx, 'l2']:
new_row.set_value('l2', res)
df2.loc[len(df2)] = new_row
return df2
print (alexey(df))
In [20]: %timeit (alexey(df))
1 loop, best of 3: 11.4 s per loop
In [21]: %timeit pd.DataFrame([(left, right) for outer in zip(l1, l2) for left, right in zip_longest(*outer, fillvalue=outer[0])])
100 loops, best of 3: 2.57 ms per loop
In [22]: %timeit pd.DataFrame({ "l1": np.repeat(df.l1.values, df.l2.str.len()), "l2": list(chain.from_iterable(df.l2))})
The slowest run took 4.42 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.41 ms per loop
答案 3 :(得分:0)
对于具有不恒定列数的DataFrame,我现在执行以下操作:
l1 = ['a', 'b', 'c']
l2 = ['x', ['y1', 'y2', 'y3'], 'z']
df = pd.DataFrame(list(zip(l1, l2)), columns = ['l1', 'l2'])
df2 = pd.DataFrame(columns=df.columns,index=df.index)[0:0]
for idx in df.index:
new_row = df.loc[idx, :].copy()
for res in df.ix[idx, 'l2']:
new_row.set_value('l2', res)
df2.loc[len(df2)] = new_row
它有效,但这看起来非常像暴力。