有效地折叠矩阵

时间:2016-06-24 21:48:16

标签: r matrix apply

我有这种格式的矩阵:

set.seed(1)
mat <- matrix(round(runif(25,0,1)),nrow=5,ncol=5)
colnames(mat) <- c("a1::C","a1::A","a1::B","b1::D","b1::A")

     a1::C a1::A a1::B b1::D b1::A
[1,]     0     1     0     0     1
[2,]     0     1     0     1     0
[3,]     1     1     1     1     1
[4,]     1     1     0     0     0
[5,]     0     0     1     1     0

简而言之,每列都是主题和特征(由列名称表示,它们由::​​)分隔。在每一行中,值为1表示主题具有该特征,如果不具有该特征则为0。某个主题可能在特定行的所有列中都有0。

我想构建一个新的矩阵,其中列将成为主题(即每个主题一列),并且在行中,该主题具有的特征将按字母顺序排序并以逗号分隔。如果受试者没有任何特征(即某一行对于该受试者都具有0&#),则值为&#34; W&#34;应该使用(没有任何特征的值为&#34; W&#34;)。

以下是基于mat的新矩阵的样子:

cnames = unique(sapply(colnames(mat), function(x) strsplit(x,split="::")[[1]][1]))
new_mat <- matrix(c("A","A","A,B,C","A,C","B",
                    "A","D","A,D","W","D"),
                  nrow=nrow(mat),ncol=length(cnames))
colnames(new_mat) = cnames

     a1      b1   
[1,] "A"     "A"  
[2,] "A"     "D"  
[3,] "A,B,C" "A,D"
[4,] "A,C"   "W"  
[5,] "B"     "D"

知道什么是一种有效而优雅的方法来实现这一目标?

2 个答案:

答案 0 :(得分:4)

第1步:矩阵列旋转

mat <- mat[, order(colnames(mat))]

#      a1::A a1::B a1::C b1::A b1::D
# [1,]     1     0     0     1     0
# [2,]     1     0     0     0     1
# [3,]     1     1     1     1     1
# [4,]     1     0     1     0     0
# [5,]     0     1     0     0     1

步骤2.1:列名分解

## decompose levels, get main levels (before ::) and sub levels (post ::)
decom <- strsplit(colnames(mat), "::")

main_levels <- sapply(decom, "[", 1)
# [1] "a1" "a1" "a1" "b1" "b1"

sub_levels <- sapply(decom, "[", 2)
# [1] "A" "B" "C" "A" "D"

步骤2.2:对索引生成进行分组

## generating grouping index
main_index <- paste(rep(main_levels, each = nrow(mat)), rep(1:nrow(mat), times = ncol(mat)), sep = "#")
sub_index <- rep(sub_levels, each = nrow(mat))
sub_index[!as.logical(mat)] <- ""  ## 0 values in mat implies ""

## in unclear of what "main_index" and "sub_index" are, check:

## matrix(main_index, nrow(mat))
#      [,1]   [,2]   [,3]   [,4]   [,5]  
# [1,] "a1#1" "a1#1" "a1#1" "b1#1" "b1#1"
# [2,] "a1#2" "a1#2" "a1#2" "b1#2" "b1#2"
# [3,] "a1#3" "a1#3" "a1#3" "b1#3" "b1#3"
# [4,] "a1#4" "a1#4" "a1#4" "b1#4" "b1#4"
# [5,] "a1#5" "a1#5" "a1#5" "b1#5" "b1#5"

## matrix(sub_index, nrow(mat))
#      [,1] [,2] [,3] [,4] [,5]
# [1,] "A"  ""   ""   "A"  ""  
# [2,] "A"  ""   ""   ""   "D" 
# [3,] "A"  "B"  "C"  "A"  "D" 
# [4,] "A"  ""   "C"  ""   ""  
# [5,] ""   "B"  ""   ""   "D" 

步骤2.3:有条件的折叠粘贴

## collapsed paste of "sub_index" conditional on "main_index"
x <- unname(tapply(sub_index, main_index, paste0, collapse = ""))
x[x == ""] <- "W"
# [1] "A"   "A"   "ABC" "AC"  "B"   "A"   "D"   "AD"  "W"   "D" 

第3步:后期处理

我对此并不满意,但没有找到替代方案。

x <- sapply(strsplit(x, ""), paste0, collapse = ",")
#  [1] "A"   "A"   "A,B,C"  "A,C"   "B"   "A"   "D"   "A,D"  "W"  "D"

第4步:矩阵

x <- matrix(x, nrow = nrow(mat))
colnames(x) <- unique(main_levels)

#      a1      b1   
# [1,] "A"     "A"  
# [2,] "A"     "D"  
# [3,] "A,B,C" "A,D"
# [4,] "A,C"   "W"  
# [5,] "B"     "D" 

效率考虑

使用矢量化方法本身相当有效,并且不需要手动输入分组信息。例如,当你有数百个主要组(之前::)和数百个子组(post ::)时,你可以使用相同的代码。

唯一的考虑因素是减少不必要的内存副本。在这方面,我们应该尽可能使用匿名函数,而不需要像上面所示的显式矩阵赋值。这样会很好(已经过测试):

 decom <- strsplit(sort(colnames(mat)), "::")
 main_levels <- sapply(decom, "[", 1)

 sub_index <- rep(sapply(decom, "[", 2), each = nrow(mat))
 sub_index[!as.logical(mat[, order(colnames(mat))])] <- ""

 x <- unname(tapply(sub_index,
                    paste(rep(main_levels, each = nrow(mat)),
                          rep(1:nrow(mat), times = ncol(mat)),
                          sep = "#"),
                    paste0, collapse = ""))

 x <- matrix(sapply(strsplit(x, ""), paste0, collapse = ","),
             nrow = nrow(mat))

 colnames(x) <- unique(main_levels)

答案 1 :(得分:2)

这是一个起点。根据您拥有的变量数量,这可能会变得很麻烦。

library(data.table)
dt = data.table(id = seq_len(nrow(mat)), mat)
longDt <- melt(dt, id.vars = "id", measure = patterns("^a1::", "^b1::"))

longDt[, .(a1 = list(sort(c("C", "A", "B")[as.logical(value1)])), 
           b1 = list(sort(c("D", "A")[as.logical(value2)]))), .(id)]
   id    a1  b1
1:  1     A   A
2:  2     A   D
3:  3 A,B,C A,D
4:  4   A,C    
5:  5     B   D