我有一些看起来像这样的python代码:
Prefix(:=<http://www.semanticweb.org/hilal/ontologies/2016/5/untitled- ontology-58#>)
Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)
Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)
Ontology(<http://www.semanticweb.org/hilal/ontologies/2016/5/untitled- ontology-58>
Declaration(Class(:Shadow))
Declaration(Class(:Test))
Declaration(NamedIndividual(:t1))
Declaration(NamedIndividual(:t2))
Declaration(NamedIndividual(:t3))
Declaration(AnnotationProperty(<http://swrl.stanford.edu/ontologies/3.3/swrla.owl#isRuleEnabled>))
############################
# Named Individuals
############################
# Individual: :t1 (:t1)
ClassAssertion(:Test :t1)
# Individual: :t2 (:t2)
ClassAssertion(:Test :t2)
# Individual: :t3 (:t3)
ClassAssertion(:Test :t3)
DLSafeRule(Annotation(<http://swrl.stanford.edu/ontologies/3.3/swrla.owl#isRuleEnabled> "true"^^xsd:boolean) Annotation(rdfs:comment ""^^xsd:string) Annotation(rdfs:label "S1"^^xsd:string) Body(BuiltInAtom(<http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl#makeOWLThing> Variable(<new>) Variable(<x>)) ClassAtom(:Test Variable(<x>)))Head(ClassAtom(:Shadow Variable(<new>))))
)
我不能为我的生活展开这个语法而不使用列表理解让我理解。请协助。
答案 0 :(得分:3)
直接翻译
mat = [[3], [4], [4], [0], [1, 2]]
nwalls = 5*[1]
for i in range(1, 3):
_nwalls = []
for j in range(5):
tot = 0 # - sum
for k in mat[j]: # /
tot += nwalls[k] # /
_nwalls.append(tot)
nwalls = _nwalls
(nwalls[k] for k in mat[j])
它是一个生成器,在python repl中,你可以将它检查为:
>>> y = (x for x in range(10))
>>> type(y)
<class 'generator'>
和sum
可以使用sum( (x for x in range(10)) )
生成器,而PEP289可以使用
如果函数调用具有单个位置参数,则它可以是没有额外括号的生成器表达式,但在所有其他情况下,您必须将其括起来。
所以它看起来像sum(x for x in range(10))
答案 1 :(得分:1)
而不是每次只为列表中的特定插槽分配新值时重新创建nwalls
列表,只需保留列表中先前值的记录,这样就不会最终使用生成的值在循环的早期:
mat = [[3], [4], [4], [0], [1, 2]]
nwalls = 5*[1]
prev_nwalls = 5*[1]
for _ in range(1,3):
for j in range(5):
nwalls[j] = sum(prev_nwalls[k] for k in mat[j])
prev_nwalls[:] = nwalls
assert nwalls == [1, 2, 2, 1, 2]
如果你想完全避免理解,首先要知道sum
内置的python等同于:
def sum(iterable):
s = 0
for n in iterable:
s+=n
return s
因此,行nwalls[j] = sum(prev_nwalls[k] for k in mat[j])
将替换为:
s = 0
for k in mat[j]:
s+=nwalls[k]
nwalls[j] = s