这是我第一次在Spark中使用Mlib。我正在尝试运行随机森林
model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
numTrees=3, featureSubsetStrategy="auto",
impurity='gini', maxDepth=4, maxBins=40)
但我收到了错误
Py4JJavaError Traceback (most recent call last)
<ipython-input-49-5a8de04ff14b> in <module>()
4 model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
5 numTrees=2, featureSubsetStrategy="auto",
----> 6 impurity='gini', maxDepth=4, maxBins=40)
/opt/spark/current/python/pyspark/mllib/tree.py in trainClassifier(cls,data, numClasses, categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins, seed)
377 return cls._train(data, "classification", numClasses,
378 categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity,
--> 379 maxDepth, maxBins, seed)
380
381 @classmethod
/opt/spark/current/python/pyspark/mllib/tree.py in _train(cls, data, algo, numClasses, categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins, seed)
294 model = callMLlibFunc("trainRandomForestModel", data, algo, numClasses,
295 categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity,
--> 296 maxDepth, maxBins, seed)
297 return RandomForestModel(model)
298
/opt/spark/current/python/pyspark/mllib/common.py in callMLlibFunc(name, *args)
128 sc = SparkContext.getOrCreate()
129 api = getattr(sc._jvm.PythonMLLibAPI(), name)
--> 130 return callJavaFunc(sc, api, *args)
131
132
/opt/spark/current/python/pyspark/mllib/common.py in callJavaFunc(sc, func, *args)
121 """ Call Java Function """
122 args = [_py2java(sc, a) for a in args]
--> 123 return _java2py(sc, func(*args))
124
125
/opt/spark/current/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/opt/spark/current/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/opt/spark/current/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling o1123.trainRandomForestModel.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 94.0 failed 4 times, most recent failure: Lost task 0.3 in stage 94.0 (TID 680, mapr5-217.jiwiredev.com): java.lang.RuntimeException: No bin was found for continuous feature. This error can occur when given invalid data values (such as NaN). Feature index: 20. Feature value: 1670.0
at org.apache.spark.mllib.tree.impl.TreePoint$.findBin(TreePoint.scala:131)
at org.apache.spark.mllib.tree.impl.TreePoint$.org$apache$spark$mllib$tree$impl$TreePoint$$labeledPointToTreePoint(TreePoint.scala:84)
at org.apache.spark.mllib.tree.impl.TreePoint$$anonfun$convertToTreeRDD$2.apply(TreePoint.scala:66)
at org.apache.spark.mllib.tree.impl.TreePoint$$anonfun$convertToTreeRDD$2.apply(TreePoint.scala:65)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:283)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$collectAsMap$1.apply(PairRDDFunctions.scala:741)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$collectAsMap$1.apply(PairRDDFunctions.scala:740)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.PairRDDFunctions.collectAsMap(PairRDDFunctions.scala:740)
at org.apache.spark.mllib.tree.DecisionTree$.findBestSplits(DecisionTree.scala:651)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:233)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:289)
at org.apache.spark.mllib.api.python.PythonMLLibAPI.trainRandomForestModel(PythonMLLibAPI.scala:751)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: No bin was found for continuous feature. This error can occur when given invalid data values (such as NaN). Feature index: 20. Feature value: 1670.0
at org.apache.spark.mllib.tree.impl.TreePoint$.findBin(TreePoint.scala:131)
at org.apache.spark.mllib.tree.impl.TreePoint$.org$apache$spark$mllib$tree$impl$TreePoint$$labeledPointToTreePoint(TreePoint.scala:84)
at org.apache.spark.mllib.tree.impl.TreePoint$$anonfun$convertToTreeRDD$2.apply(TreePoint.scala:66)
at org.apache.spark.mllib.tree.impl.TreePoint$$anonfun$convertToTreeRDD$2.apply(TreePoint.scala:65)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:283)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
我正在喂它LabeledPoint。如果我发布任何其他代码,请告诉我。
非常感谢任何解释
答案 0 :(得分:0)
java.lang.RuntimeException:找不到连续功能的bin。
您需要为输入数据提供有效的存储桶。 1671不在为特征序号20定义的任何桶中。
/**
* Find discretized value for one (labeledPoint, feature).
*
* NOTE: We cannot use Bucketizer since it handles split thresholds differently than the old
* (mllib) tree API. We want to maintain the same behavior as the old tree API.
*
* @param featureArity 0 for continuous features; number of categories for categorical features.
*/
private def findBin(
featureIndex: Int,
labeledPoint: LabeledPoint,
featureArity: Int,
thresholds: Array[Double]): Int = {