我有一个3D numpy数组(尺寸:深度,纬度,经度),我正在尝试使用沿每个lat-lon点的深度轴的数据进行一些并行计算,到目前为止,我一直没有成功。我查看了dask.array.core.map_blocks
的文档,但没有任何帮助。这就是我在做的事情:
N2_dask = da.from_array(N2_naned, chunks=(49, 32, (12, 12, 12, 12, 12, 12)))
zN2_dask = da.from_array(-zN2_agg[t], chunks=(49, 32, (12, 12, 12, 12, 12, 12)))
lat_dask = da.from_array(lat_agg, chunks=(32))
lon_dask = da.from_array(lon_agg, chunks=((12, 12, 12, 12, 12, 12)))
for j in range(len(lat_dask)):
for i in range(len(lon_dask)):
f = da.core.map_blocks(baroclinic.neutral_modes_from_N2_profile(
zN2_dask[:, j, i], N2_dask[:, j, i], gsw.earth.f(lat_dask[j, i]), **kwargs))
zphi, Rd, vd = f.compute()
其中baroclinic.neutral_modes_from_N2_profile是我的功能。我收到如下错误:
AssertionErrorTraceback (most recent call last)
<ipython-input-61-e58a7b54c470> in <module>()
6 print zN2_dask[:, j, i]
7 f = da.core.map_blocks(baroclinic.neutral_modes_from_N2_profile(
----> 8 zN2_dask[:, j, i], N2_dask[:, j, i], gsw.earth.f(lat_dask[j, i]), **kwargs))
9 zphi, Rd, vd = f.compute()
/home/takaya/.conda/envs/oceanmodes/lib/python2.7/site-packages/dask/array/core.pyc in __getitem__(self, index)
1023 return self
1024
-> 1025 dsk, chunks = slice_array(out, self.name, self.chunks, index)
1026
1027 return Array(merge(self.dask, dsk), out, chunks, dtype=self._dtype)
/home/takaya/.conda/envs/oceanmodes/lib/python2.7/site-packages/dask/array/slicing.pyc in slice_array(out_name, in_name, blockdims, index)
134
135 # Pass down to next function
--> 136 dsk_out, bd_out = slice_with_newaxes(out_name, in_name, blockdims, index)
137
138 bd_out = tuple(map(tuple, bd_out))
/home/takaya/.conda/envs/oceanmodes/lib/python2.7/site-packages/dask/array/slicing.pyc in slice_with_newaxes(out_name, in_name, blockdims, index)
152
153 # Pass down and do work
--> 154 dsk, blockdims2 = slice_wrap_lists(out_name, in_name, blockdims, index2)
155
156 # Insert ",0" into the key: ('x', 2, 3) -> ('x', 0, 2, 0, 3)
/home/takaya/.conda/envs/oceanmodes/lib/python2.7/site-packages/dask/array/slicing.pyc in slice_wrap_lists(out_name, in_name, blockdims, index)
183 shape = tuple(map(sum, blockdims))
184 assert all(isinstance(i, (slice, list, int, long)) for i in index)
--> 185 assert len(blockdims) == len(index)
186 for bd, i in zip(blockdims, index):
187 check_index(i, sum(bd))
AssertionError:
谁能告诉我为什么这会给我一个AssertionError?提前谢谢!
答案 0 :(得分:0)
Chunks应该是一个整数元组,在整个数组中指定一个统一的chunkshape
chunks=(49, 32, 12)
或者它应该是一个元组元组,每个元组定义如何对每个维度进行分块。
chunks=((20, 20, 9), (8, 8, 8, 8), (12, 24, 24, 12))
在您的情况下,您似乎正在混合这些表格
chunks=(49, 32, (12, 12, 12, 12, 12, 12))
您可能打算使用以下方法之一:
chunks=(49, 32, 12)
chunks=((49,), (32,), (12, 12, 12, 12, 12, 12))
鉴于最后一个维度是统一分块(全部12个)我建议只使用(49, 32, 12)