我正在处理矩阵X
以及此矩阵y
中每一行的标签。
X
定义为:
df = pd.read_csv("./data/svm_matrix_0.csv", sep=',',header=None, encoding="ISO-8859-1")
df2 = df.convert_objects(convert_numeric=True)
X = df_2.values
y
定义为:
df = pd.read_csv('./data/Step7_final.csv', index_col=False, encoding="ISO-8859-1")
y = df.iloc[:, 1].values
然后我将机器学习SVM应用于:
clf = svm.SVC(kernel='linear', C=1) #specify classifier
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) #splitting randomly the training and test data
clf.fit(X_train,y_train) #training of machine
现在,我想更改X_train
大小,并计算X_train
的每个值的列车和测试错误:
test_error = clf.score(X_test, y_test)
train_error = clf.score(X_train, y_train)
X_train
的大小应该增加(例如15个不同的值),然后这些值应该以{{1}}的形式存储在字典中。
我试过了:
{X_train size: (test_error, train_error)}
但它不起作用,因为我也改变了array = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
dicto = {}
for i in array:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = i)
clf.fit(X_train,y_train)
test = clf.score(X_test, y_test)
train = clf.score(X_train, y_train)
dicto[i] = test, train
print(dicto)
。有人知道如何调整我的代码,使其仅变化X_test
的大小(以便在增加的总数据集大小时计算错误)?
答案 0 :(得分:1)
您可以做的是先将测试数据分开......
X_train_prev, X_test_prev, y_train_prev, y_test_prev = train_test_split(X, y, test_size = 0.2)
现在运行for循环改变列车大小,但测试**之前的测试数据*
像这样 -array = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
dicto = {}
for i in array:
X_train, _, y_train, _ = train_test_split(X, y, test_size = i)
clf.fit(X_train,y_train)
#use the previous test data...
test = clf.score(X_test_prev, y_test_prev)
train = clf.score(X_train, y_train)
dicto[i] = test, train
print(dicto)
但请注意,由于数据是随机的,我所做的事情可能会降低看不见的数据中的模型指标得分,我们也会污染测试数据。那么你可以做些什么来避免它被分成火车数据,以便你的测试数据保持分离!!
像这样(for循环中的行) -X_train, _, y_train, _ = train_test_split(X_train_prev, y_train_prev, test_size = i)