我正在尝试从Investing.com生成最新货币报价单。
我有以下代码:
head = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36",
"X-Requested-With": "XMLHttpRequest"}
ISO_Code=[]
Latest=[]
for item in ISO_CURR_ID.ISO_Code[:4]:
url = 'http://www.investing.com/currencies/usd-'+item+'-historical-data'
r = requests.get(url, headers=head)
soup = BeautifulSoup(r.content, 'html.parser')
try:
CurrHistoricRange = pd.read_html(r.content,attrs = {'id': 'curr_table'}, flavor="bs4")[0]
Item='USD/'+item
ISO_Code.append(np.array(Item))
# Latest.append(np.array(CurrHistoricRange[:1]))
Latest.append(CurrHistoricRange[:1])
except:
pass
其中ISO_CURR_ID.ISO_Code为:
In [69]:ISO_CURR_ID.ISO_Code[:4]
Out[69]:
0 EUR
1 GBP
2 JPY
3 CHF
我需要最终的格式才能成为像这样的表
ISO_Code Date Price Open High Low Change %
0 EUR Jun 21, 2016, 0.8877, 0.8833, 0.8893, 0.881, -0.14%
但如果我使用
,我m having problems to undestand how to merge those first rows without repeating column names. So I
会得到这样的结果
Final=pd.DataFrame(dict(ISO_Code = ISO_Code, Latest_Quotes = Latest))
Final
Out[71]:
ISO_Code Latest_Quotes
0 USD/EUR Date Price Open High Low...
1 USD/GBP Date Price Open High Lo...
2 USD/JPY Date Price Open High Low...
3 USD/CHF Date Price Open High Low...
答案 0 :(得分:1)
我认为这是一种更清洁的方式来完成你想要做的事情
head = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36",
"X-Requested-With": "XMLHttpRequest"}
latest_data=[]
for item in ISO_CURR_ID.ISO_Code:
url = 'http://www.investing.com/currencies/usd-'+item+'-historical-data'
r = requests.get(url, headers=head)
soup = BeautifulSoup(r.content, 'html.parser')
try:
CurrHistoricRange = pd.read_html(r.content,attrs = {'id': 'curr_table'}, flavor="bs4")[0]
Item='USD/'+item
data = CurrHistoricRange.iloc[0].to_dict()
data["ISO_Code"] = Item
latest_data.append(data)
except Exception as e:
print(e)
def getDf(latest_list, order = ["ISO_Code", "Date", "Price", "Open", "High", "Low", "Change %"]):
return pd.DataFrame(latest_list, columns=order)
getDf(latest_data)
输出:
ISO_Code Date Price Open High Low Change %
0 USD/EUR Jun 21, 2016 0.8882 0.8833 0.8893 0.8810 0.55%
1 USD/GBP Jun 21, 2016 0.6822 0.6815 0.6829 0.6766 0.10%
2 USD/JPY Jun 21, 2016 104.75 103.82 104.82 103.60 0.88%
3 USD/CHF Jun 21, 2016 0.9613 0.9620 0.9623 0.9572 -0.07%
答案 1 :(得分:0)
我建议您使用pandas.Panel,类似于pandas_datareader:
import requests
from bs4 import BeautifulSoup
import pandas as pd
head = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36",
"X-Requested-With": "XMLHttpRequest"
}
ISO_Code=[]
Latest=[]
URL = 'http://www.investing.com/currencies/usd-{}-historical-data'
dfs = {}
curr_ser = pd.Series(['EUR','GBP','JPY','CHF'])
#for item in ISO_CURR_ID.ISO_Code[:4]:
for item in curr_ser:
url = URL.format(item)
r = requests.get(url, headers=head)
soup = BeautifulSoup(r.content, 'html.parser')
try:
Item='USD/'+item
dfs[Item] = pd.read_html(r.content,attrs = {'id': 'curr_table'}, flavor="bs4")[0]
#CurrHistoricRange = pd.read_html(r.content,attrs = {'id': 'curr_table'}, flavor="bs4")[0]
#ISO_Code.append(np.array(Item))
#Latest.append(np.array(CurrHistoricRange[:1]))
#Latest.append(CurrHistoricRange[:1])
except:
pass
# create Panel out of dictionary of DataFrames
p = pd.Panel(dfs)
# slice first row from all DFs
t = p[:,0,:]
print(t)
print(t.T)
输出:
USD/CHF USD/EUR USD/GBP USD/JPY
Date Jun 21, 2016 Jun 21, 2016 Jun 21, 2016 Jun 21, 2016
Price 0.9618 0.8887 0.6828 104.97
Open 0.962 0.8833 0.6815 103.82
High 0.9623 0.8893 0.6829 104.97
Low 0.9572 0.881 0.6766 103.6
Change % -0.02% 0.61% 0.19% 1.09%
Date Price Open High Low Change %
USD/CHF Jun 21, 2016 0.9618 0.962 0.9623 0.9572 -0.02%
USD/EUR Jun 21, 2016 0.8887 0.8833 0.8893 0.881 0.61%
USD/GBP Jun 21, 2016 0.6828 0.6815 0.6829 0.6766 0.19%
USD/JPY Jun 21, 2016 104.97 103.82 104.97 103.6 1.09%
如果我们按照以下方式对DF的指数(按日期)进行排序:
dfs[Item] = pd.read_html(r.content,
attrs = {'id': 'curr_table'},
flavor="bs4",
parse_dates=['Date'],
index_col=[0]
)[0].sort_index()
# create Panel out of dictionary of DataFrames
p = pd.Panel(dfs)
现在我们可以做很多有趣的事情:
In [18]: p.axes
Out[18]:
[Index(['USD/CHF', 'USD/EUR', 'USD/GBP', 'USD/JPY'], dtype='object'),
DatetimeIndex(['2016-05-23', '2016-05-24', '2016-05-25', '2016-05-26', '2016-05-27', '2016-05-30', '2016-05-31', '2016-06-01', '2016-06-02', '20
16-06-03', '2016-06-06', '2016-06-07', '2016-06-08',
'2016-06-09', '2016-06-10', '2016-06-13', '2016-06-14', '2016-06-15', '2016-06-16', '2016-06-17', '2016-06-19', '2016-06-20', '20
16-06-21'],
dtype='datetime64[ns]', name='Date', freq=None),
Index(['Price', 'Open', 'High', 'Low', 'Change %'], dtype='object')]
In [19]: p.keys()
Out[19]: Index(['USD/CHF', 'USD/EUR', 'USD/GBP', 'USD/JPY'], dtype='object')
In [22]: p.to_frame().head(10)
Out[22]:
USD/CHF USD/EUR USD/GBP USD/JPY
Date minor
2016-05-23 Price 0.9896 0.8913 0.6904 109.23
Open 0.9905 0.8913 0.6893 110.08
High 0.9924 0.8942 0.6925 110.25
Low 0.9879 0.8893 0.6872 109.08
Change % -0.06% 0.03% 0.12% -0.84%
2016-05-24 Price 0.9933 0.8976 0.6833 109.99
Open 0.9892 0.891 0.6903 109.22
High 0.9946 0.8983 0.6911 110.12
Low 0.9882 0.8906 0.6827 109.14
Change % 0.37% 0.71% -1.03% 0.70%
按货币对和日期编制索引
In [25]: p['USD/EUR', '2016-06-10':'2016-06-15', :]
Out[25]:
Price Open High Low Change %
Date
2016-06-10 0.8889 0.8835 0.8893 0.8825 0.59%
2016-06-13 0.8855 0.8885 0.8903 0.8846 -0.38%
2016-06-14 0.8922 0.8856 0.8939 0.8846 0.76%
2016-06-15 0.8881 0.892 0.8939 0.8848 -0.46%
货币对索引
In [26]: p['USD/EUR', :, :]
Out[26]:
Price Open High Low Change %
Date
2016-05-23 0.8913 0.8913 0.8942 0.8893 0.03%
2016-05-24 0.8976 0.891 0.8983 0.8906 0.71%
2016-05-25 0.8964 0.8974 0.8986 0.8953 -0.13%
2016-05-26 0.8933 0.8963 0.8975 0.8913 -0.35%
2016-05-27 0.8997 0.8931 0.9003 0.8926 0.72%
2016-05-30 0.8971 0.8995 0.9012 0.8969 -0.29%
2016-05-31 0.8983 0.8975 0.8993 0.8949 0.13%
2016-06-01 0.8938 0.8981 0.9 0.8929 -0.50%
2016-06-02 0.8968 0.8937 0.8974 0.8911 0.34%
2016-06-03 0.8798 0.8968 0.8981 0.8787 -1.90%
2016-06-06 0.8807 0.8807 0.8831 0.8777 0.10%
2016-06-07 0.8804 0.8805 0.8821 0.8785 -0.03%
2016-06-08 0.8777 0.8803 0.8812 0.8762 -0.31%
2016-06-09 0.8837 0.877 0.8847 0.8758 0.68%
2016-06-10 0.8889 0.8835 0.8893 0.8825 0.59%
2016-06-13 0.8855 0.8885 0.8903 0.8846 -0.38%
2016-06-14 0.8922 0.8856 0.8939 0.8846 0.76%
2016-06-15 0.8881 0.892 0.8939 0.8848 -0.46%
2016-06-16 0.8908 0.8879 0.8986 0.8851 0.30%
2016-06-17 0.8868 0.8907 0.8914 0.885 -0.45%
2016-06-19 0.8813 0.8822 0.8841 0.8811 -0.63%
2016-06-20 0.8833 0.8861 0.8864 0.8783 0.23%
2016-06-21 0.8891 0.8833 0.8893 0.881 0.66%
按日期索引
In [28]: p[:, '2016-06-20', :]
Out[28]:
USD/CHF USD/EUR USD/GBP USD/JPY
Price 0.962 0.8833 0.6815 103.84
Open 0.9599 0.8861 0.6857 104.63
High 0.9633 0.8864 0.6881 104.84
Low 0.9576 0.8783 0.6794 103.78
Change % 0.22% 0.23% -0.61% -0.75%
In [29]: p[:, :, 'Change %']
Out[29]:
USD/CHF USD/EUR USD/GBP USD/JPY
Date
2016-05-23 -0.06% 0.03% 0.12% -0.84%
2016-05-24 0.37% 0.71% -1.03% 0.70%
2016-05-25 -0.20% -0.13% -0.42% 0.18%
2016-05-26 -0.20% -0.35% 0.18% -0.38%
2016-05-27 0.55% 0.72% 0.31% 0.42%
2016-05-30 -0.25% -0.29% -0.07% 0.82%
2016-05-31 0.14% 0.13% 1.10% -0.38%
2016-06-01 -0.55% -0.50% 0.42% -1.07%
2016-06-02 0.23% 0.34% -0.04% -0.61%
2016-06-03 -1.45% -1.90% -0.66% -2.14%
2016-06-06 -0.56% 0.10% 0.55% 0.97%
2016-06-07 -0.55% -0.03% -0.71% -0.19%
2016-06-08 -0.62% -0.31% 0.28% -0.35%
2016-06-09 0.55% 0.68% 0.30% 0.10%
2016-06-10 0.02% 0.59% 1.42% -0.10%
2016-06-13 -0.03% -0.38% -0.11% -0.68%
2016-06-14 -0.11% 0.76% 1.11% -0.13%
2016-06-15 -0.21% -0.46% -0.64% -0.08%
2016-06-16 0.40% 0.30% 0.03% -1.67%
2016-06-17 -0.54% -0.45% -1.08% -0.12%
2016-06-19 0.00% -0.63% -1.55% 0.48%
2016-06-20 0.22% 0.23% -0.61% -0.75%
2016-06-21 0.02% 0.66% 0.35% 0.98%
两轴索引
In [30]: p[:, '2016-06-10':'2016-06-15', 'Change %']
Out[30]:
USD/CHF USD/EUR USD/GBP USD/JPY
Date
2016-06-10 0.02% 0.59% 1.42% -0.10%
2016-06-13 -0.03% -0.38% -0.11% -0.68%
2016-06-14 -0.11% 0.76% 1.11% -0.13%
2016-06-15 -0.21% -0.46% -0.64% -0.08%