Python:Ramer-Douglas-Peucker(RDP)算法,具有点数而不是epsilon

时间:2016-06-21 14:09:37

标签: python algorithm computational-geometry simplification

我想修改以下RDP algorithm的python脚本,目的是不使用epsilon,而是选择我想要留在最后的点数:

"use strict";

let util = require('util');
let http = require('http');
let Bot  = require('@kikinteractive/kik');

// Configure the bot API endpoint, details for your bot
let bot = new Bot({
    username: '***',
    apiKey: '***',
    baseUrl: 'https://***'
});

bot.updateBotConfiguration();

var options = {
    "data": "user scanned",
    "width": 250,
    "height": 250,
    "color": 13 // Royal Purple
};
bot.getKikCodeUrl(options).then((res) => {
    console.log("Got Kik Code");
});

我发现了这种精神的Java脚本:https://gist.github.com/msbarry/9152218

有没有人知道Python 3.X的版本?

由于 Momow

1 个答案:

答案 0 :(得分:2)

将上面链接中的JS代码移植到Python [2.7]:

# -*- coding: utf-8 -*-

import math
import time


def timenow():
    return int(time.time() * 1000)

def sqr(x):
    return x*x

def distSquared(p1, p2):
    return sqr(p1[0] - p2[0]) + sqr(p1[1] - p2[1])

class Line(object):
    def __init__(self, p1, p2):
        self.p1 = p1
        self.p2 = p2
        self.lengthSquared = distSquared(self.p1, self.p2)

    def getRatio(self, point):
        segmentLength = self.lengthSquared
        if segmentLength == 0:
            return distSquared(point, p1);
        return ((point[0] - self.p1[0]) * (self.p2[0] - self.p1[0]) + \
        (point[1] - self.p1[1]) * (self.p2[1] - self.p1[1])) / segmentLength

    def distanceToSquared(self, point):
        t = self.getRatio(point)

        if t < 0:
            return distSquared(point, self.p1)
        if t > 1:
            return distSquared(point, self.p2)

        return distSquared(point, [
            self.p1[0] + t * (self.p2[0] - self.p1[0]),
            self.p1[1] + t * (self.p2[1] - self.p1[1])
        ])

    def distanceTo(self, point):
        return math.sqrt(self.distanceToSquared(point))


def simplifyDouglasPeucker(points, pointsToKeep):
    weights = []
    length = len(points)

    def douglasPeucker(start, end):
        if (end > start + 1):
            line = Line(points[start], points[end])
            maxDist = -1
            maxDistIndex = 0

            for i in range(start + 1, end):
                dist = line.distanceToSquared(points[i])
                if dist > maxDist:
                    maxDist = dist
                    maxDistIndex = i

            weights.insert(maxDistIndex, maxDist)

            douglasPeucker(start, maxDistIndex)
            douglasPeucker(maxDistIndex, end)

    douglasPeucker(0, length - 1)
    weights.insert(0, float("inf"))
    weights.append(float("inf"))

    weightsDescending = weights
    weightsDescending = sorted(weightsDescending, reverse=True)

    maxTolerance = weightsDescending[pointsToKeep - 1]
    result = [
        point for i, point in enumerate(points) if weights[i] >= maxTolerance
    ]

    return result