我现在正在参加Coursera机器学习课程而且我无法通过渐变下降线性回归函数来最小化。我使用:一个因变量,一个截距,以及四个x和y值,因此方程式非常简单。 Gradient Decent方程的最终值根据alpha和beta的初始值而变化很大,我无法弄清楚原因。 我只编写了大约两周的时间,所以我的知识至少可以说,如果你花时间帮忙,请记住这一点。
using System;
namespace LinearRegression
{
class Program
{
static void Main(string[] args)
{
Random rnd = new Random();
const int N = 4;
//We randomize the inital values of alpha and beta
double theta1 = rnd.Next(0, 100);
double theta2 = rnd.Next(0, 100);
//Values of x, i.e the independent variable
double[] x = new double[N] { 1, 2, 3, 4 };
//VAlues of y, i.e the dependent variable
double[] y = new double[N] { 5, 7, 9, 12 };
double sumOfSquares1;
double sumOfSquares2;
double temp1;
double temp2;
double sum;
double learningRate = 0.001;
int count = 0;
do
{
//We reset the Generalized cost function, called sum of squares
//since I originally used SS to
//determine if the function was minimized
sumOfSquares1 = 0;
sumOfSquares2 = 0;
//Adding 1 to counter for each iteration to keep track of how
//many iterations are completed thus far
count += 1;
//First we calculate the Generalized cost function, which is
//to be minimized
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += Math.Pow((theta1 + theta2 * x[i] - y[i]), 2);
}
//Since we have 4 values of x and y we have 1/(2*N) = 1 /8 = 0.125
sumOfSquares1 = 0.125 * sum;
//Then we calcualte the new alpha value, using the derivative of
//the cost function.
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += theta1 + theta2 * x[i] - y[i];
}
//Since we have 4 values of x and y we have 1/(N) = 1 /4 = 0.25
temp1 = theta1 - learningRate * 0.25 * sum;
//Same for the beta value, it has a different derivative
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += (theta1 + theta2 * x[i]) * x[i] - y[i];
}
temp2 = theta2 - learningRate * 0.25 * sum;
//WE change the values of alpha an beta at the same time, otherwise the
//function wont work
theta1 = temp1;
theta2 = temp2;
//We then calculate the cost function again, with new alpha and beta values
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += Math.Pow((theta1 + theta2 * x[i] - y[i]), 2);
}
sumOfSquares2 = 0.125 * sum;
Console.WriteLine("Alpha: {0:N}", theta1);
Console.WriteLine("Beta: {0:N}", theta2);
Console.WriteLine("GCF Before: {0:N}", sumOfSquares1);
Console.WriteLine("GCF After: {0:N}", sumOfSquares2);
Console.WriteLine("Iterations: {0}", count);
Console.WriteLine(" ");
} while (sumOfSquares2 <= sumOfSquares1 && count < 5000);
//we end the iteration cycle once the generalized cost function
//cannot be reduced any further or after 5000 iterations
Console.ReadLine();
}
}
}